精英家教網 > 高中數學 > 題目詳情
定義在上的函數滿足以下條件:
(1)對任意(2)對任意.
以下不等式:①;②;③;④.其中一定成立的是           (請寫出所有正確的序號)
①②③

試題分析:條件(1)說明是奇函數;條件(2)說明函數在是增函數且函數值為正數。由(1)可知在[-a,-1]函數也為增函數,函數值為負,且有a>1>0.
因為奇函數在x=0有意義,則f(0)=0,所以結合(2)知①對;
因為所以,②對;
因為a>1>0,,且a越大,越接近-3,能保證自變量的值在函數的增區間內,所以正確,③對;
對于④,特取a=2時。 , f(-a)=f(2)>0,所以 <f(2)矛盾,④不成立。
綜上所述①②③一定成立。
點評:中檔題,對于奇函數,其圖象關于原點成中心對稱。在關于原點對稱的區間,奇函數單調性相同,偶函數單調性相反。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(12分)已知函數是定義在上的偶函數,已知當時,.
(1)求函數的解析式;
(2)求函數的單調遞增區間;
(3)求在區間上的值域。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數
(I)求x為何值時,上取得最大值;
(II)設是單調遞增函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數的定義域為R,當時,,且對任意的實數R,等式成立.若數列滿足,且
(N*),則的值為(     )
A.4024B.4023C.4022D.4021

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知函數
(1)求函數的單調區間和值域。
(2)設,求函數,若對于任意,總存在,使得成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)設計一副宣傳畫,要求畫面積為4840,畫面的寬與高的比為,畫面的上,下各留8空白,左右各留5空白,怎樣確定畫面的高于寬尺寸,能使宣傳畫所用紙張面積最?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
我們把定義在上,且滿足(其中常數滿足)的函數叫做似周期函數.
(1)若某個似周期函數滿足且圖像關于直線對稱.求證:函數是偶函數;
(2)當時,某個似周期函數在時的解析式為,求函數的解析式;
(3)對于確定的時,,試研究似周期函數函數在區間上是否可能是單調函數?若可能,求出的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共8分)
提高二環路的車輛通行能力可有效改善整個城區的交通狀況,在一般情況下,二環路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數。當二環路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當60≤x≤600時,車流速度v是車流密度x的一次函數。
(Ⅰ)當0≤x≤600時,求函數f(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過二環路上某觀測點的車輛數,單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數其中
(1)、若的單調增區間是(0.1),求m的值
(2)、當時,函數的圖像上任意一點的切線斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视