精英家教網 > 高中數學 > 題目詳情
已知橢圓的左、右焦點和短軸的兩個端點構成邊長為2的正方形.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當最大時,求直線的方程.
(Ⅰ)橢圓的方程為;(Ⅱ)直線的方程為

試題分析:(Ⅰ)由已知,橢圓的左、右焦點和短軸的兩個端點構成邊長為2的正方形,所以,利用,可得,又橢圓的焦點在軸上,從而得橢圓的方程;(Ⅱ)需分直線的斜率是否為0討論.①當直線的斜率為0時,則;②當直線的斜率不為0時,設,,直線的方程為,將代入,整理得.利用韋達定理列出.結合,,列出關于的函數,應用均值不等式求其最值,從而得的值,最后求出直線的方程.
試題解析:(Ⅰ)由已知得(2分),又,∴橢圓方程為(4分)
(Ⅱ)①當直線的斜率為0時,則;       6分
②當直線的斜率不為0時,設,,直線的方程為
代入,整理得
.      8分
,,
所以,=
 10分.
,則
所以當且僅當,即時,取等號. 由①②得,直線的方程為.13分.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,離心率,右焦點為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的上頂點為,在橢圓上是否存在點,使得向量共線?若存在,求直線的方程;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當DAOB的面積等于時,求k的值. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓以坐標軸為對稱軸,且經過點、.記其上頂點為,右頂點為.
(1)求圓心在線段上,且與坐標軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點,使的面積最大.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設點P、F1、F2關于直線y=x的對稱點分別為,求以為焦點且過點的雙曲線的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線和⊙O∶相離,則過點的直線與橢圓的交點個數為(    )
A.至多一個B. 2個C. 1個   D.0個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過拋物線x2=2py(p>0)的焦點作斜率為1的直線與該拋物線交于A,B兩點,A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則P="__________" .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视