【題目】若函數f(x)=(1﹣x2)(x2+ax+b)的圖象關于直線x=﹣2對稱,則f(x)的最大值為 .
【答案】16
【解析】解:∵函數f(x)=(1﹣x2)(x2+ax+b)的圖象關于直線x=﹣2對稱,
∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,
即[1﹣(﹣3)2][(﹣3)2+a(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a(﹣5)+b]=0,
解之得 ,
因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,
求導數,得f′(x)=﹣4x3﹣24x2﹣28x+8,
令f′(x)=0,得x1=﹣2﹣ ,x2=﹣2,x3=﹣2+
,
當x∈(﹣∞,﹣2﹣ )時,f′(x)>0;當x∈(﹣2﹣
,﹣2)時,f′(x)<0;
當x∈(﹣2,﹣2+ )時,f′(x)>0; 當x∈(﹣2+
,+∞)時,f′(x)<0
∴f(x)在區間(﹣∞,﹣2﹣ )、(﹣2,﹣2+
)上是增函數,在區間(﹣2﹣
,﹣2)、(﹣2+
,+∞)上是減函數.
又∵f(﹣2﹣ )=f(﹣2+
)=16,
∴f(x)的最大值為16.
所以答案是:16.
【考點精析】本題主要考查了函數的最大(小)值與導數的相關知識點,需要掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】正項數列{an}的前n項和Sn滿足:Sn2
(1)求數列{an}的通項公式an;
(2)令b ,數列{bn}的前n項和為Tn . 證明:對于任意n∈N* , 都有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(1)證明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣5:不等式選講)
已知函數f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機模擬的方法估計事件
發生的概率.利用電腦隨機產生整數0,1,2,3四個隨機數,分別代表“瓷、都、文、明”這四個字,以每三個隨機數為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發生的概率為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com