已知P為曲線C上任一點,若P到點F的距離與P到直線
距離相等
(1)求曲線C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點E(a,0),使恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
(12分)拋物線的焦點為
,過點
的直線交拋物線于
,
兩點.
①為坐標原點,求證:
;
②設點在線段
上運動,原點
關于點
的對稱點為
,求四邊形
面積的最小值..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系上取兩個定點
,再取兩個動點
,且
.
(Ⅰ)求直線與
交點的軌跡
的方程;
(Ⅱ)已知點(
)是軌跡
上的定點,
是軌跡
上的兩個動點,如果直線
的斜率
與直線
的斜率
滿足
,試探究直線
的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題分12分)
如圖,斜率為1的直線過拋物線的焦點,與拋物線交于兩點A、B, 將直線
按向量
平移得到直線
,
為
上的動點,
為拋物線弧
上的動點.
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)
如圖,拋物線的焦點到準線的距離與橢圓
的長半軸相等,設橢圓的右頂點為
在第一象限的交點為
為坐標原點,且
的面積為
(1)求橢圓的標準方程;
(2)過點作直線
交
于
兩點,射線
分別交
于
兩點.
(I)求證:點在以
為直徑的圓的內部;
(II)記的面積分別為
,問是否存在直線
,使得
?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分) 設拋物線C1:x2=4y的焦點為F,曲線C2與C1關于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓
,
的離心率為
,直線
與以
原點為圓心,以橢圓
的短半軸長為半徑的圓相切。
、求橢圓
的方程;
、過點
的直線
(斜率存在時)與橢圓
交于
、
兩點,設
為橢圓
與
軸負半軸的交點,且
,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線是以原點O為中心、
為焦點的橢圓的一部分,曲線
是以O為頂點、
為焦點的拋物線的一部分,A是曲線
和
的交點
且
為鈍角.
(1)求曲線和
的方程;
(2)過作一條與
軸不垂直的直線,分別與曲線
依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問
是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com