精英家教網 > 高中數學 > 題目詳情
(本小題滿分13分)(注意:在試題卷上作答無效)
已知函數的反函數為,定義:若對給定的實數,函數互為反函數,則稱滿足“和性質”.
(1)判斷函數是否滿足“1和性質”,并說明理由;
(2)若,其中滿足“2和性質”,則是否存在實數a,使得
對任意的恒成立?若存在,求出的范圍;若不存在,請說明理由.
(1)函數不滿足“1和性質”;
(2)當使得對任意的恒成立
(1)首先搞清楚什么樣的函數具有“和性質”.本小題只要證明互為反函數,即可說明y=f(x)滿足“1和性質”.
(2)設函數滿足“2和性質”,再求出其反函數,根據互為反函數,可求出k,b 的值.進而確定F(x),同時可研究其單調性.利用其單調性解再轉化為不等式恒成立問題解決.
(1)函數的反函數是
        而其反函數為
, 故函數不滿足“1和性質”;
......6分
(2)設函數滿足“2和性質”,
,而,得反函數
由“2和性質”定義可知=恒成立,
即函數,,在上遞減,......9分
所以假設存在實數滿足,即對任意的恒成立,它等價于上恒成立. ,,易得.而所以.綜合以上有當使得對任意的恒成立.......13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數
(Ⅰ)當時,解不等式
(Ⅱ)討論函數的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)試判斷當的大小關系;
(2)求證:
(3)設、是函數的圖象上的兩點,且,證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,且,當時,是增函數,
,,,則、的大小順序是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數,滿足,則的大小關系
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數是偶函數,當時,,且當時,的值域是,則的值是      (    )
A.B.C.1D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為奇函數。
(1)判斷函數在區間(1,)上的單調性;
(2)解關于的不等式:。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若偶函數上是減函數,則不等式的解集是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,則=  ( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视