【題目】已知函數.
(1)求曲線在點
處的切線方程;
(2)求函數的零點和極值;
(3)若對任意,都有
成立,求實數
的最小值.
【答案】(1);(2)零點
,極小值
;(3)1.
【解析】分析:(1)求出導函數,切線切線方程為
,化簡即可;
(2)由得極值點,討論極值點兩邊
的正負,得極值;
(3)求出在
上的最小值和最大值,由最大值-最小值
求得
,可結合要求
的最小值,討論
的單調性及最值.
詳解:(1)因為,所以
.
因為,所以曲線
在
處的切線方程為
.
(2)令,解得
,
所以的零點為
.
由解得
,
則及
的情況如下:
2 | |||
- | 0 | + |
所以函數在
時,取得極小值
.
(3)法一:
當時,
.
當時,
.
若,由(2)可知
的最小值為
,
的最大值為
,
所以“對任意,有
恒成立”等價于
即, 解得
. 所以
的最小值為1.
法二:當時,
. 當
時,
.
且由(2)可知,的最小值為
,
若,令
,則
而,不符合要求,
所以. 當
時,
,
,
所以,即
滿足要求,
綜上,的最小值為1.
科目:高中數學 來源: 題型:
【題目】某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是( )
A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關
B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大
C.全年中各月最低氣溫平均值不高于10°C的月份有5個
D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左頂點為
,右焦點為
,斜率為1的直線與橢圓
交于
,
兩點,且
,其中
為坐標原點.
(1)求橢圓的標準方程;
(2)設過點且與直線
平行的直線與橢圓
交于
,
兩點,若點
滿足
,且
與橢圓
的另一個交點為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)把曲線向下平移
個單位,然后各點橫坐標變為原來的
倍得到曲線
(縱坐標不變),設點
是曲線
上的一個動點,求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足
=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線與曲線
兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為
,直線
與
軸的交點為
,與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數的個位數,十位數和百位數,記這個三位數為a,現將組成a的三個數字按從小到大排成的三位數記為I(a),按從大到小排成的三位數記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,則輸出b的值為( )
A. 792 B. 693 C. 594 D. 495
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com