【題目】共享單車是指企業在校園、地鐵站點、公共站點、居民區、商業區、公共服務區等提供自行車單車共享服務,是一種分時租賃模式,是共享經濟的一種新形態.某共享單車企業在城市就“一天中一輛單車的平均成本與租用單車數量之間的關系”進行了調查,并將相關數據統計如下表:
租用單車數量 | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
根據以上數據,研究人員設計了兩種不同的回歸分析模型,得到兩個擬合函數:
模型甲: ,模型乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1元)(備注: ,
稱為相應于點
的殘差);
租用單車數量 | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | 2.4 | 2 | 1.8 | 1.4 | |
殘差 | 0 | 0 | 0.1 | 0.1 | ||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)這家企業在城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應求,于是該企業決定增加單車投放量.根據市場調查,市場投放量達到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤=收入-成本)
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=的定義域為R,則實數m取值范圍為
A.{m|–1≤m≤0}B.{m|–1<m<0}
C.{m|m≤0}D.{m|m<–1或m>0}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市為調查會員某年度上半年的消費情況制作了有獎調查問卷發放給所有會員,并從參與調查的會員中隨機抽取名了解情況并給予物質獎勵.調查發現抽取的
名會員消費金額(單位:萬元)都在區間
內,調查結果按消費金額分成
組,制作成如下的頻率分布直方圖.
(1)求該名會員上半年消費金額的平均值與中位數;(以各區間的中點值代表該區間的均值)
(2)若再從這名會員中選出一名會員參加幸運大抽獎,幸運大抽獎方案如下:會員最多有兩次抽獎機會,每次抽獎的中獎概率均為
,第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋擲一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎.規定:拋出的硬幣,若反面朝上,則會員獲得
元獎金,不進行第二次抽獎;若正面朝上,會員需進行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金
元,如果未中獎,則所獲得的獎金為
元.若參加幸運大抽獎的會員所獲獎金(單位:元)用
表示,求
的分布列與期望值
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,離心率
.左焦點為
,過點
且與
軸垂直的直線被橢圓截得的線段長為3.
(1)求該橢圓的方程;
(2)過橢圓的左焦點的任意一條直線與橢圓交于
兩點,在
軸上是否存在定點
使得
軸平分
,若存在,求出定點坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在
上是增函數,則
的取值范圍是( 。
A. B.
C.
D.
【答案】C
【解析】
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,則x2﹣ax+3a>0且f(2)>0,根據二次函數的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,
則當x∈[2,+∞)時,
x2﹣ax+3a>0且函數f(x)=x2﹣ax+3a為增函數
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復合函數的單調性,二次函數的性質,對數函數的單調區間,其中根據復合函數的單調性,構造關于a的不等式,是解答本題的關鍵.
【題型】單選題
【結束】
10
【題目】圓錐的高和底面半徑
之比
,且圓錐的體積
,則圓錐的表面積為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,離心率為
.
(1)求橢圓的方程;
(2),
是過點
且互相垂直的兩條直線,其中
交圓
于
,
兩點,
交橢圓
于另一個點
,求
面積取得最大值時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com