【題目】(多選題)有下列幾個命題,其中正確的命題是( )
A.函數在
上是增函數
B.函數在
上是減函數
C.函數的單調區間是
D.已知在
上是增函數,若
,則有
E.已知函數是奇函數,則
科目:高中數學 來源: 題型:
【題目】按照我國《機動車交通事故責任強制保險條例》規定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發生道路交通事故的情況相關聯,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
投保類型 | 浮動因素 | 浮動比率 |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 20 | 10 | 10 | 20 | 15 | 5 |
(1)根據上述樣本數據,估計一輛普通7座以下私家車(車齡已滿3年)在下一年續保時,保費高于基準保費的概率;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.
①若該銷售商部門店內現有6輛該品牌二手車(車齡已滿3年),其中兩輛事故車,四輛非事故車.某顧客在店內隨機挑選兩輛車,求這兩輛車中恰好有一輛事故車的概率;
②以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率.該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,若購進一輛事故車虧損4000元,一輛非事故車盈利8000元.試估計這批二手車一輛車獲得利潤的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數據:,
.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的個數是( )
①球的半徑是球面上任意一點與對球心的連線;
②球面上任意兩點的連線是球的直徑;
③用一個平面截一個球,得到的截面是一個圓;
④用一個平面截一個球,得到的截面是一個圓面;
⑤以半圓的直徑所在直線為軸旋轉形成的曲面叫做球;
⑥空間中到定點的距離等于定長的所有的點構成的曲面是球面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某地一天從時的溫度變化曲線近似滿足函數
.
(1)求該地區這一段時間內溫度的最大溫差.
(2)若有一種細菌在到
之間可以生存,則在這段時間內,該細菌最多能存活多長時間?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數函數f(x)=ax(a>0且a≠1)為減函數,則P是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)
在平面直角坐標系中,點到點
的距離之和為4.
(1)試求點A的M的方程.
(2)若斜率為的直線l與軌跡M交于C,D兩點,
為軌跡M上不同于C,D的一點,記直線PC的斜率為
,直線PD的斜率為
,試問
是否為定值.若是,求出該定值;若不同,請說出理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com