(08年福州質檢二文)(12分)
如圖,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點.
(Ⅰ)求與平面A1C1CA所成角的大;
(Ⅱ)求二面角B―A1D―A的大小;
(Ⅲ)點F是線段AC的中點,證明:EF⊥平面A1BD.
解析:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.
∵AC⊥CB,∴BC⊥平面A1C1CA. ………………1分
∴為
與平面A1C1CA所成角,
.
∴與平面A1C1CA所成角為
.………3分
(Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結BM,
∵BC⊥平面ACC1A1,∴CM為BM在平面A1C1CA內的射影,
∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分
平面A1C1CA中,C1C=CA=2,D為C1C的中點,
∴CG=2,DC=1 在直角三角形CDG中,,
.……7分
即二面角B―A1D―A的大小為.……………………8分
(Ⅲ)證明:∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,
∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,
∵EF在平面A1C1CA內的射影為C1F,∵F為AC中點,
∴C1F⊥A1D,∴EF⊥A1D.……………………11分
同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分
解法二:
(Ⅰ)同解法一……………………3分
(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,
AC⊥CB,D、E分別為C1C、B1C1的中點.
建立如圖所示的坐標系得:
C(0,0,0),B(2,0,0),A(0,2,0),
C1(0,0,2), B1(2,0,2), A1(0,2,2),
D(0,0,1), E(1,0,2).………………6分
,設平面A1BD的法向量為
,
.…………6分
平面ACC1A1的法向量為=(1,0,0),
.………7分
即二面角B―A1D―A的大小為.…………………8分
(Ⅲ)證明:∵F為AC的中點,∴F(0,1,0),.……10分
由(Ⅱ)知平面A1BD的一個法向量為,∴
//n . ……11分
EF⊥平面A1BD.…………………………………12分
科目:高中數學 來源: 題型:
(08年福州質檢二文)(12分)
三個人進行某項射擊活動,在一次射擊中甲、乙、丙三人射中目標的概率分別為、
、
.
(Ⅰ)一次射擊后,三人都射中目標的概率是多少?
(Ⅱ)用隨機變量表示三個人在一次射擊后射中目標的次數與沒有射中目標的次數之差的絕對值.求證
的取值為1或3,并求
時的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com