【題目】某校進入高中數學競賽復賽的學生中,高一年級有6人,高二年級有12人, 高三年級有24人,現采用分層抽樣的方法從這些學生中抽取7人進行采訪.
(1)求應從各年級分別抽取的人數;
(2)若從抽取的7人中再隨機抽取2人做進一步了解(注高一學生記為,高二學生記為
,高三學生記為
,
)
①列出所有可能的抽取結果;
②求抽取的2人均為高三年級學生的概率.
科目:高中數學 來源: 題型:
【題目】設橢圓方程為,過點
的直線l交橢圓于點A,B,O是坐標原點,點P滿足
,點N的坐標為
,當l繞點M旋轉時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中的真命題是( )
A. 若,則向量
與
的夾角為鈍角
B. 若,則
C. 若命題“是真命題”,則命題“
是真命題”
D. 命題“,
”的否定是“
,
”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點E是棱AB的中點.
(1)求異面直線AD1與EC所成角的大。
(2)《九章算術》中,將四個面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有兩個車間生產同一種產品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產完成一件產品的時間(單位:min)分別進行統計,得到下列統計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數分布表
(Ⅰ)分別估計兩個車間工人中,生產一件產品時間小于75min的人數;
(Ⅱ)分別估計兩車間工人生產時間的平均值,并推測哪個車間工人的生產效率更高?(同一組中的數據以這組數據所在區間中點的值作代表)
(Ⅲ)從第一車間被統計的生產時間小于75min的工人中隨機抽取2人,求抽取的2人中,至少1人生產時間小于65min的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足
.
(1)求點P的軌跡方程;
(2)設點在直線
上,且
.證明:過點P且垂直于OQ的直線
過C的左焦點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有,
兩個分廠生產某種產品,規定該產品的某項質量指標值不低于130的為優質品.分別從
,
兩廠中各隨機抽取100件產品統計其質量指標值,得到如圖頻率分布直方圖:
(1)根據頻率分布直方圖,分別求出分廠的質量指標值的眾數和中位數的估計值;
(2)填寫列聯表,并根據列聯表判斷是否有
的把握認為這兩個分廠的產品質量有差異?
優質品 | 非優質品 | 合計 | |
合計 |
(3)(i)從分廠所抽取的100件產品中,利用分層抽樣的方法抽取10件產品,再從這10件產品中隨機抽取2件,已知抽到一件產品是優質品的條件下,求抽取的兩件產品都是優質品的概率;
(ii)將頻率視為概率,從分廠中隨機抽取10件該產品,記抽到優質品的件數為
,求
的數學期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com