(05年浙江卷文)(14分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(Ⅰ)求證:OD∥平面PAB;
(Ⅱ) 求直線OD與平面PBC所成角的大。
解析:解法一
(Ⅰ)∵O、D分別為AC、PC的中點:∴OD∥PA,又AC平面PAB,∴OD∥平面PAB.
(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC.
取BC中點E,連結PE,則BC⊥平面POE,作OF⊥PE于F,連結DF,則OF⊥平面PBC
∴∠ODF是OD與平面PBC所成的角.
又OD∥PA,∴PA與平面PBC所成角的大小等于∠ODF.
在Rt△ODF中,sin∠ODF=,∴PA與平面PBC所成角為arcsin
解法二:
∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.
以O為原點,射線OP為非負x軸,建立空間坐標系O-xyz如圖),設AB=a,則A(a,0,0).
B(0, a,0),C(-
a,0,0).設OP=h,則P(0,0,h).
(Ⅰ)∵D為PC的中點,∴又
∥
,
∴OD∥平面PAB.
(Ⅱ)∵k=則PA=2a,∴h=
∴
可求得平面PBC的法向量
∴cos.
設PA與平面PBC所成角為θ,剛sinθ=|cos()|=
.
∴PA與平面PBC所成的角為arcsin.
科目:高中數學 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數為,求隨機變量
的期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年周至二中三模理) 已知等差數列{an}的公差為2,若a1,a3,a4成等比數列,則a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年濱州市質檢三文)(12分)已知函數.
(I)當m>0時,求函數的單調遞增區間;
(II)是否存在小于零的實數m,使得對任意的,都有
,若存在,求m的范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com