已知橢圓的左右兩焦點分別為
,
是橢圓上一點,且在
軸上方,
.
(1)求橢圓的離心率的取值范圍;
(2)當取最大值時,過
的圓
的截
軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點
引圓
的兩條切線,切點分別為
.試探究直線
是否過定點?若過定點,請求出該定點;否則,請說明理由.
(1);(2)
;(3)
.
【解析】
試題分析:(1)由,
,
.即可求得
的取值范圍.
(2)由(1)可得.以及
是圓的直徑可得
.即可求出橢圓的方程.
(3)由(2)可得圓Q的方程.切點M,N所在的圓的方程上任一點坐標為P(x,y).由.即得
.則M,N所在的直線方程為.兩圓方程對減即可得到.根據過定點的知識即可求出定點.本題涉及的知識點較多,滲透方程的思想,加強對幾何圖形的關系理解.
試題解析: , ∴
,
.
(1),∴
,在
上單調遞減.
∴時,
最小
,
時,
最大
,∴
,∴
.
(2)當時,
,∴
,∴
.
∵,∴
是圓的直徑,圓心是
的中點,∴在y軸上截得的弦長就是直徑,∴
=6.又
,∴
.∴橢圓方程是
10分
(3)由(2)得到,于是圓心
,半徑為3,圓
的方程是
.橢圓的右準線方程為
,,∵直線AM,AN是圓Q的兩條切線,∴切點M,N在以AQ為直徑的圓上.設A點坐標為
,∴該圓方程為
.∴直線MN是兩圓的公共弦,兩圓方程相減得:
,這就是直線MN的方程.該直線化為:
∴直線MN必過定點.
16分
考點:1.橢圓的離心率.2.橢圓的標準方程.3.兩圓的公共線的方程.4.過定點問題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源:江蘇模擬題 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2010年陜西省咸陽市禮泉一中高三5月最后一次預測數學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2010-2011學年江蘇省蘇州中學高三數學能力基礎訓練試卷2(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com