已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.
科目:高中數學 來源: 題型:解答題
已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同交點;
(2)若圓C與直線l相交于A,B兩點,求弦AB的中點M的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓的方程:
,其中
.
(1)若圓C與直線相交于
,
兩點,且
,求
的值;
(2)在(1)條件下,是否存在直線,使得圓上有四點到直線
的距離為
,若存在,求出
的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓的方程為:
,直線的方程為
,點
在直線上,過點
作圓
的切線
,切點為
.
(1)若,求點
的坐標;
(2)若點的坐標為
,過點
的直線與圓
交于
兩點,當
時,求直線
的方程;
(3)求證:經過(其中點
為圓
的圓心)三點的圓必經過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知:以點C(t,)(t∈R,t≠0)為圓心的圓與
軸交于點O,A,與y軸交于點O,B,其中O為原點
(1)求證:△OAB的面積為定值;
(2)設直線y=–2x+4與圓C交于點M,N,若OM=ON,求圓C的方程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com