精英家教網 > 高中數學 > 題目詳情

一個車間為了規定工時定額.需要確定加工零件所花費的時間,為此進行了10次試驗.測得的數據如下:

零件數x/個
10
20
30
40
50
60
70
80
90
100
加工時間y/分
62
68
75
81
89
95
102
108
115
122
(1)y與x是否具有線性相關關系?
(2)如果y與x具有線性相關關系,求回歸直線方程;
(3)根據求出的回歸直線方程,預測加工200個零件所用的時間為多少?

(1)x與y之間有很強的線性相關關系,因而可求回歸直線方程
(2)=0.668x+54.96
(3)189分

解析解:(1)列出下表:

i
1
2
3
4
5
6
7
8
9
10
xi
10
20
30
40
50
60
70
80
90
100
yi
62
68
75
81
89
95
102
108
115
122
xiyi
620
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在數學趣味知識培訓活動中,甲、乙兩名學生的5次培訓成績如下莖葉圖所示:

(1)從甲、乙兩人中選擇1人參加數學趣味知識競賽,你會選哪位?請運用統計學的知識說明理由;
(2) 從乙的5次培訓成績中隨機選擇2個,試求選到121分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取個作為樣本,稱出它們的重量(單位:克),重量分組區間為,,,,由此得到樣本的重量頻率分布直方圖,如圖

(1)求的值;
(2)根據樣本數據,試估計盒子中小球重量的平均值;
(注:設樣本數據第組的頻率為,第組區間的中點值為,則樣本數據的平均值為.)
(3)從盒子中隨機抽取個小球,其中重量在內的小球個數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場經營一批進價是30元/臺的小商品,在市場試驗中發現,此商品的銷售單價x(x取整數)元與日銷售量y臺之間有如下關系:

x
35
40
45
50
y
56
41
28
11
(1)畫出散點圖,并判斷y與x是否具有線性相關關系?
(2)求日銷售量y對銷售單價x的線性回歸方程;
(3)設經營此商品的日銷售利潤為P元,根據(1)寫出P關于x的函數關系式,并預測當銷售單價x為多少元時,才能獲得最大日銷售利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4,則該產品為一等品.先從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:

產品編號
A1
A2
A3
A4
A5
質量指標(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產品編號
A6
A7
A8
A9
A10
質量指標(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數據估計該批產品的一等品率;
(2)在該樣品的一等品中,隨機抽取兩件產品,
(1)用產品編號列出所有可能的結果;
(2)設事件B為“在取出的2件產品中,每件產品的綜合指標S都等于4”,求事件B發生的概率

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某校高一年級60名學生參加數學競賽,成績全部在40分至100分之間,現將成績分成以下6段:,據此繪制了如圖所示的頻率分布直方圖.

(1)求成績在區間的頻率;
(2)從成績大于等于80分的學生中隨機選3名學生,其中成績在[90,100]內的學生人數為ξ,求ξ的分布列與均值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某化肥廠有甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產品,稱其重量(單位:kg),分別記錄抽查數據如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計算甲、乙車間產品重量的平均數與方差,并說明哪個車間產品較穩定?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對某電子元件進行壽命追蹤調查,所得樣本數據的頻率分布直方圖如下.

(1)求,并根據圖中的數據,用分層抽樣的方法抽取個元件,元件壽命落在之間的應抽取幾個?
(2)從(1)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個元件壽命落在之間,一個元件壽命落在之間”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設三組實驗數據(x1,y1),(x2,y2),(x3,y3)的回歸直線方程是:=x+,使代數式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小時,=-,=(,分別是這三組數據的橫、縱坐標的平均數),
若有7組數據列表如下:

x
2
3
4
5
6
7
8
y
4
6
5
6.2
8
7.1
8.6
(1)求上表中前3組數據的回歸直線方程.
(2)若|yi-(xi+)|≤0.2,即稱(xi,yi)為(1)中回歸直線的擬合“好點”,求后4組數據中擬合“好點”的概率.

查看答案和解析>>
久久精品免费一区二区视