精英家教網 > 高中數學 > 題目詳情

【題目】九章算術中將底面為長方形,且有一條側棱與底面垂直的四棱錐稱之為“陽馬”現有一陽馬,其正視圖和側視圖是如圖所示的直角三角形若該陽馬的頂點都在同一個球面上,且該球的表面積為,則該“陽馬”的體積為__

【答案】

【解析】

該幾何體為四棱錐P﹣ABCD.底面ABCD為矩形,其中PD⊥底面ABCD.利用P﹣ABCD的頂點都在同一個球面上,且該球的表面積為求出PD,再利用三棱錐的體積公式求出即可.

如圖所示,該幾何體為四棱錐P﹣ABCD.底面ABCD為矩形,其中PD⊥底面ABCD.

AB=2,AD=4,PD=h.因為P﹣ABCD的頂點都在同一個球面上,

P﹣ABCD外接球的直徑為PB=

因為P﹣ABCD外接球的表面積為∴S= ==

所以h=2,

故答案為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.

(1)求點到其準線的距離;

(2)求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數),.

(1)若對任意的,,都有恒成立,試求m的取值范圍;

(2)用表示m,n中的最小值,設函數),討論關于x的方程的實數解的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了解用戶對其產品的滿意度,從某地區隨機調查了100個用戶,得到用戶對產品的滿意度評分頻率分布表如下:

組別

分組

頻數

頻率

第一組

10

0.1

第二組

20

0.2

第三組

40

0.4

第四組

25

0.25

第五組

5

0.05

合計

100

1

1)根據上面的頻率分布表,估計該地區用戶對產品的滿意度評分超過70分的概率;

2)請由頻率分布表中數據計算眾數、中位數,平均數,根據樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區用戶對產品是否滿意?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中;

1BMED平行;(2CNBE是異面直線;(3CNBM所成角為60°;(4CNAF垂直. 以上四個命題中,正確命題的序號是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等六項專項附加扣除.某單位老、中、青員工分別有人,現采用分層抽樣的方法,從該單位上述員工中抽取人調查專項附加扣除的享受情況.

(Ⅰ)應從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.

員工

項目

A

B

C

D

E

F

子女教育

×

×

繼續教育

×

×

×

大病醫療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養老人

×

×

×

(i)試用所給字母列舉出所有可能的抽取結果;

(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),將函數f(x)的圖象向左平移個單位長度得到函數g(x)的圖象,則函數g(x)的單調遞減區間是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓恒過點,且與直線 相切.

(1)求動圓圓心的軌跡的方程;

(2)探究在曲線上,是否存在異于原點的兩點, ,當時,直線恒過定點?若存在,求出該定點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點,GH為線段DC的三等分點.將長方形ABCD卷成以AD為母線的圓柱W的半個側面,ABCD分別為圓柱W上、下底面的直徑.

Ⅰ)證明:平面ADHF⊥平面BCHF

(Ⅱ)若PDC的中點,求三棱錐HAGP的體積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视