精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知,其中是自然對數的底數,
(1)討論時,的單調性。
(2)求證:在(1)條件下,
(3)是否存在實數,使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

(1) 增區間,減區間(2)證明:,(3)存在

解析試題分析:(1),令增區間,減區間
(2)由(1)可知,,定義域
,令,所以的最大值為成立
(3),當恒成立,無最小值;當時,令,令

考點:判定函數單調性求其最值
點評:本題借助函數的導數求出單調區間進而計算其最值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數
(Ⅰ)若,求的單調區間;
(Ⅱ)若當≥0時≥0,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1) 若的極值點,求在[1,]上的最大值;
(2) 若在區間[1,+)上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)已知在x=2時有極大值6,在x=1時有極小值.
⑴ 求的值;
⑵ 求在區間上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)  如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點M,使得過M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)如果函數的單調遞減區間為,求函數的解析式;
(2)在(1)的條件下,求函數的圖像過點的切線方程;
(3)對一切的,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數
(Ⅰ)若,試確定函數的單調區間;
(Ⅱ)若,且對于任意,恒成立,試確定實數的取值范圍;
(Ⅲ)設函數,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
已知函數f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數f(x)的圖象過原點,且在原點處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調遞增函數,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视