精英家教網 > 高中數學 > 題目詳情
已知數列{an}的前n項和為Sn,且Sn=2an-2(n=1,2,3…),數列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上。
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)記Sn=a1b1+a2b2+…+anbn,求滿足Sn<167的最大正整數n。

解:(Ⅰ)∵
∴當n≥2時,,
,

,
即數列{an}是等比數列,
,


∵點P(bn,bn+1)在直線x-y+2=0上,
,

即數列{bn}是等差數列,

。
(Ⅱ)
,①
,②
①-②得
,
,

于是,
又由于當n=4時,,
當n=5時,;
故滿足條件Sn<167最大的正整數n為4。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视