【題目】某產品生產廠家根據以往的生產銷售經驗得到下面有關生產銷售的統計規律:每生產產品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本).銷售收入R(x)(萬元)滿足 ,假定該產品產銷平衡(即生產的產品都能賣掉),根據上述統計規律,請完成下列問題:
(1)寫出利潤函數y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)要使工廠有盈利,求產量x的范圍;
(3)工廠生產多少臺產品時,可使盈利最多?
【答案】
(1)解:由題意得G(x)=2.8+x
∵ ,
∴f(x)=R(x)﹣G(x)
=
(2)解:∵f(x)= ,
∴當0≤x≤5時,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.
當x>5時,由f(x)=8.2﹣x>0,得5<x<8.2.
∴要使工廠有盈利,求產量x的范圍是(1,8.2)
(3)解:∵f(x)= ,
∴當x>5時,函數f(x)遞減,
∴f(x)<f(5)=3.2(萬元).
當0≤x≤5時,函數f(x)=﹣0.4(x﹣4)2+3.6,
當x=4時,f(x)有最大值為3.6(萬元).
所以當工廠生產4百臺時,可使贏利最大為3.6萬元
【解析】(1)由題意得G(x)=2.8+x.由 ,f(x)=R(x)﹣G(x),能寫出利潤函數y=f(x)的解析式.(2)當0≤x≤5時,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;當x>5時,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工廠有盈利,產量x的范圍.(3)當x>5時,由函數f(x)遞減,知f(x)<f(5)=3.2(萬元).當0≤x≤5時,函數f(x)=﹣0.4(x﹣4)2+3.6,當x=4時,f(x)有最大值為3.6(萬元).由此能求出工廠生產多少臺產品時,可使盈利最多.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣1+ ,(a∈R,e為自然對數的底數).
(1)求函數f(x)的單調區間;
(2)當a=1時,若直線l:y=kx﹣1與曲線y=f(x)沒有公共點,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
,
,
分別為棱
的中點.
(1)在平面內過點
作
平面
交
于點
,并寫出作圖步驟,但不要求證明.
(2)若側面側面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是指企業在校園、地鐵站點、公交站點、居民區、商業區、公共服務區等提供自行車單車共享服務,是共享經濟的一種新形態.一個共享單車企業在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:千輛)之間的關系”進行調查研究,在調查過程中進行了統計,得出相關數據見下表:
租用單車數量 | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1)(備注: ,
稱為相應于點
的殘差(也叫隨機誤差));
租用單車數量 | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放.根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,曲線C:(x﹣1)2+y2=1.直線l經過點P(m,0),且傾斜角為 .以O為極點,以x軸正半軸為極軸,建立坐標系.
(1)寫出曲線C的極坐標方程與直線l的參數方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點是棱長為2的正方體
的棱
的中點,點
在面
所在的平面內,若平面
分別與平面
和平面
所成的銳二面角相等,則點
到點
的最短距離是( )
A. B.
C. 1 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場在店慶一周年開展“購物折上折活動”:商場內所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8﹣200=1000(元).設購買某商品得到的實際折扣率= .設某商品標價為x元,購買該商品得到的實際折扣率為y.
(1)寫出當x∈(0,1000]時,y關于x的函數解析式,并求出購買標價為1000元商品得到的實際折扣率;
(2)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于 ?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com