【題目】設函數f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數的單調區間與極值.
【答案】(1)曲線y=f(x)在點(1,f(1))處的切線斜率為1
(2)f(x)在(-∞,1-m)和(1+m,+∞)內為減函數;最大值為f(1+m)=m3+m2-
;最小值為f(1-m)=-
m3+m2-
【解析】試題分析:(1)根據導數幾何意義先求切線斜率f′(1),(2)先求導函數零點x=1-m或x=1+m.再列表分析導函數符號變化規律,確定單調區間及極值.
試題解析:(1)當m=1時,f(x)=- x3+x2,
f′(x)=-x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(1,f(1))處的切線的斜率為1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m或x=1+m.
因為m>0,所以1+m>1-m.
當x變化時,f′(x),f(x)的變化情況如下表:
所以f(x)在(-∞,1-m),(1+m,+∞)內是減函數,在(1-m,1+m)內是增函數.
函數f(x)在x=1-m處取得極小值f(1-m),且f(1-m)=- m3+m2-
.
函數f(x)在x=1+m處取得極大值f(1+m),且f(1+m)=m3+m2-
.
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環數如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環數的平均數和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應生產A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產值函數為R(x)=3 700x+45x2-10x3(單位:萬元),成本函數為C(x)=460x-5 000(單位:萬元).
(1)求利潤函數P(x);(提示:利潤=產值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面內有一個△ABC和一點O(如圖),線段OA,OB,OC的中點分別為E,F,G,BC,CA,AB的中點分別為L,M,N,設 =
,
=
,
=
.
(1)試用 ,
,
表示向量
,
,
;
(2)證明:線段EL,FM,GN交于一點且互相平分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和Sn滿足:Sn=n2 , 等比數列{bn}滿足:b2=2,b5=16
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com