精英家教網 > 高中數學 > 題目詳情

(本題滿分15分)已知函數

 (I)求證:上單調遞增;

(Ⅱ)函數有三個零點,求值;

(Ⅲ)對恒成立,求的取值范圍.

 

【答案】

(I)函數上單調遞增。證明略

(Ⅱ) 

(Ⅲ)。

【解析】解:(I),

     由于,故嘗時,,所以,

     故函數上單調遞增。

  (Ⅱ)令,得到

         因為函數 有三個零點,所以有三個根,

         因為當時,,所以,故  

  (Ⅲ)由(Ⅱ)可知在區間上單調遞減,在區間上單調遞增。

        所以,

          

     記(僅在時取到等號),

     所以遞增,故,

     所以 ,     于是

     故對

     ,所以。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(0,1),,直線、都是圓的切線(點不在軸上).
(Ⅰ)求過點且焦點在軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于兩點,問是否存在定點使為常數?若存在,求出點的坐標及常數;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源:2013屆江蘇省揚州市高二下期中數學試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三10月月考理科數學 題型:解答題

(本題滿分15分)已知函數

(Ⅰ)若為定義域上的單調函數,求實數m的取值范圍;

(Ⅱ)當時,求函數的最大值;

(Ⅲ)當,且時,證明:

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三下學期2月模擬考試文科數學 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,

(1)當直線的斜率為1時,求線段AB的長;

(2)設點M和點N關于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個公共點時,求實數的取值;

   (2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视