【題目】某校高一、高二年級的全體學生都參加了體質健康測試,測試成績滿分為100分,規定測試成績在之間為“體質優秀”,在
之間為“體質良好”,在
之間為“體質合格”,在
之間為“體質不合格”.現從這兩個年級中各隨機抽取7名學生,測試成績如下:
其中m,n是正整數.
(Ⅰ)若該校高一年級有280學生,試估計高一年級“體質優秀”的學生人數;
(Ⅱ)若從高一年級抽取的7名學生中隨機抽取2人,記X為抽取的2人中為“體質良好”的學生人數,求X的分布列及數學期望;
(Ⅲ)設兩個年級被抽取學生的測試成績的平均數相等,當高二年級被抽取學生的測試成績的方差最小時,寫出m,n的值.(只需寫出結論)
【答案】(Ⅰ)120人;(Ⅱ)分布列見解析,;(Ⅲ)
.
【解析】
(Ⅰ )高一年級隨機抽取的7名學生中,“體質優秀”的有3人,優秀率為,即可算出答案
(Ⅱ)高一年級抽取的7名學生中“體質良好”的有2人,非“體質良好”的有5人.所以X的可能取值為0,1,2,然后分別算出對應的概率即可
(Ⅲ)高一年級被抽取學生的測試成績的平均數為,故高二年級被抽取學生的測試成績的平均數也為
,從而可得
,所以要使方差最小,
.
(Ⅰ)高一年級隨機抽取的7名學生中,“體質優秀”的有3人,優秀率為,將此頻率視為概率,估計高一年級“體質優秀”的學生人數為
.
(Ⅱ)高一年級抽取的7名學生中“體質良好”的有2人,非“體質良好”的有5人.所以X的可能取值為0,1,2
所以,
,
所以隨機變量X的分布列為:
X | 0 | 1 | 2 |
P |
(Ⅲ).
科目:高中數學 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2元.
(1)設1箱零件人工檢驗總費用為元,求
的分布列;
(2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6元.現有1000箱零件需要檢驗,以檢驗總費用的數學期望為依據,在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
上任意一點到兩個焦點的距離和為4,且離心率為
.
(1)求橢圓的方程.
(2)過作互相垂直的兩條直線分別與橢圓
交于
,
和
,
,設
中點為
,
中點為
,試探究直線
是否過定點?若是,求出該定點;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過橢圓
的焦點,且橢圓
的中心
關于直線
的對稱點的橫坐標為
(
為橢圓
的焦距).
(1)求橢圓的方程;
(2)是否存在過點,且交橢圓
于點
的直線
,滿足
.若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某款電視機的壽命,研究人員對該款電視機進行了相應的測試,將得到的數據分組:,
,
,
,
,并統計如圖所示:
并對不同性別的市民對這款電視機的購買意愿作出調查,得到的數據如下表所示:
愿意購買該款電視機 | 不愿意購買該款電視機 | 總計 | |
男性 | 800 | 1000 | |
女性 | 600 | ||
總計 | 1200 |
(1)根據圖中的數據,試估計該款電視機的平均壽命;
(2)根據表中數據,能否在犯錯誤的概率不超過0.001的前提下認為“是否愿意購買該款電視機”與“市民的性別”有關;
(3)以頻率估計概率,若在該款電視機的生產線上隨機抽取4臺,記其中壽命不低于4年的電視機的臺數為X,求X的分布列及數學期望.
參考公式及數據:,其中
.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的,
,
三個不同車間生產同一產品的數量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測:
車間 | |||
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,
,
各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產品來自相同車間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若拋物線的焦點為
,
是坐標原點,
為拋物線上的一點,向量
與
軸正方向的夾角為60°,且
的面積為
.
(1)求拋物線的方程;
(2)若拋物線的準線與
軸交于點
,點
在拋物線
上,求當
取得最大值時,直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據統計某種有機蔬菜的產量與有機肥料的用量有關系,每個有機蔬菜大棚產量的增加量(百斤)與使用堆漚肥料
(千克)之間對應數據如下表
使用堆漚肥料 | 2 | 4 | 5 | 6 | 8 |
產量的增加量 | 3 | 4 | 4 | 4 | 5 |
依據表中的數據,用最小二乘法求出關于
的線性回歸方程
;并根據所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產量增加量
是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且
);
前8小時內的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,當購進17份比購進18份的利潤的期望值大時,求的取值范圍.
附:回歸直線方程為,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com