A.2 B. C.
D.
科目:高中數學 來源: 題型:
(1)若f(x)在區間(0,1]上是增函數,求a的取值范圍;
(2)求f(x)在區間(0,1]上的最大值.
(文)設直線l:y=x+1與橢圓=1(a>b>0)相交于A、B兩個不同的點,與x軸相交于點F.
(1)證明a2+b2>1;
(2)若F是橢圓的一個焦點,且,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
圖6
我們把由半橢圓=1(x≥0)與半橢圓
=1(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.
如圖6,點F0、F1、F2是相應橢圓的焦點,A1、A2和B1、B2分別是“果圓”與x、y軸的交點.〔(文)M是線段A1A2的中點〕
(1)(理)若△F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
(2)(理)當|A1A2|>|B1B2|時,求的取值范圍.
(文)設P是“果圓”的半橢圓=1(x≤0)上任意一點,求證:當|PM|取得最小值時,P在點B1、B2或A1處.
(3)(理)連結“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數k,使斜率為k的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的k值;若不存在,請說明理由.
(文)若P是“果圓”上任意一點,求|PM|取得最小值時點P的橫坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)試求橢圓的方程;
(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值和最小值.
(文)已知函數f(x)=x3+bx2+cx,b、c∈R,且函數f(x)在區間(-1,1)上單調遞增,在區間(1,3)上單調遞減.
(1)若b=-2,求c的值;
(2)求證:c≥3;
(3)設函數g(x)=f′(x),當x∈[-1,3]時,g(x)的最小值是-1,求b、c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求橢圓的方程;
(2)設直線l過F點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
(文)某廠家擬在2006年舉行促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)x萬件與年促銷費用m萬元(m≥0)滿足x=3(k為常數),如果不搞促銷活動,則該產品的年銷售量只能是1萬件.已知2006年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金,不包括促銷費用).
(1)將2006年該產品的利潤y萬元表示為年促銷費用m萬元的函數;
(2)該廠家2006年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com