精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ln(2ax+1)+ ﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數a的值;
(2)若y=f(x)在[3,+∞)上為增函數,求實數a的取值范圍.

【答案】
(1)解: =

∵x=2為f(x)的極值點,∴f′(2)=0,即 ,解得a=0.

又當a=0時,f′(x)=x(x﹣2),可知:x=2為f(x)的極值點成立


(2)解:∵y=f(x)在[3,+∞)上為增函數,

∴f′(x)= ≥0,在[3,+∞)上恒成立.

①當a=0時,f′(x)=x(x﹣2)≥0在[3,+∞)上恒成立,∴f(x)在[3,+∞)上為增函數,故a=0符合題意.

②當a≠0時,由函數f(x)的定義域可知:必須2ax+1>0對x≥3恒成立,故只能a>0,

∴2ax2+(1﹣4a)x﹣(4a2+2)≥0在區間[3,+∞)上恒成立.

令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其對稱軸為

∵a>0, ,從而g(x)≥0在區間[3,+∞)上恒成立,只要g(3)≥0即可.

由g(3)=﹣4a2+6a+1≥0,解得

∵a>0,∴

綜上所述,a的取值范圍為


【解析】(1)令f′(x)=0解得a,再驗證是否滿足取得極值的條件即可.(2)由y=f(x)在[3,+∞)上為增函數,可得f′(x)= ≥0,在[3,+∞)上恒成立.對a分類討論即可得出.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減;求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線經過點,且斜率為

(I)求直線的方程;

)若直線平行,且點P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國家射擊隊的某隊員射擊一次,命中7~10環的概率如表所示:

命中環數

10環

9環

8環

7環

概率

0.32

0.28

0.18

0.12

求該射擊隊員射擊一次 求:

(1)射中9環或10環的概率;

(2)至少命中8環的概率;(3)命中不足8環的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點B的坐標為(1,2),求點A和點C的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點,動圓經過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設曲線上一點的橫坐標為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線在第一象限內的點到焦點的距離為

(1)若,過點, 的直線與拋物線相交于另一點,求的值;

(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標原點, ,試問:是否存在實數,使得的長為定值?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】活水圍網養魚技術具有養殖密度高、經濟效益好的特點.研究表明:活水圍網養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度(單位:尾/立方米)的函數.當不超過/立方米時, 的值為千克/年;當時, 的一次函數,且當時,

)當時,求關于的函數的表達式.

)當養殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱中, ,ACB=90°,M是 的中點,N是的中點.

Ⅰ)求證:MN∥平面

求點到平面BMC的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的一個頂點為拋物線的頂點, , 兩點都在拋物線上,且.

(1)求證:直線必過一定點;

(2)求證: 面積的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视