【題目】化簡
(1)
(2)
【答案】(1) ;(2)
.
【解析】試題分析:(1)切化弦可得三角函數式的值為-1
(2)結合三角函數的性質可得三角函數式的值為
試題解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×(
)
=×cos10°×(
)
=×(﹣
)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
點睛:三角函數式的化簡要遵循“三看”原則:一看角,這是重要一環,通過看角之間的差別與聯系,把角進行合理的拆分,從而正確使用公式 ;二看函數名稱,看函數名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結構特征,分析結構特征,可以幫助我們找到變形的方向,如遇到分式要通分等.
【題型】解答題
【結束】
18
【題目】平面內給定三個向量
(1)求
(2)求滿足的實數
.
(3)若,求實數
.
科目:高中數學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
參照附表,以下結論正確是( )
A.有99.5%以上的把握認為“愛好該項運動與性別有關”
B.有99.5%以上的把握認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有3an=2Sn+3成立.
(1)求數列{an}的通項公式;
(2)設bn=log3an , 求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.
(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的最小值為
.
(1)求;
(2)若,求
及此時
的最大值.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)利用同角三角函數間的基本關系化簡函數解析式后,分三種情況:①小于﹣1時②
大于﹣1而小于1時③
大于1時,根據二次函數求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把
代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
試題解析:
(1)由
.這里
①若則當
時,
②若當
時,
③若則當
時,
因此
(2)
①若
,則有
得
,矛盾;
②若,則有
即
或
(舍).
時,
此時
當時,
取得最大值為5.
點睛:二次函數在閉區間上必有最大值和最小值,它只能在區間的端點或二次函數圖象的頂點處取到;常見題型有:(1)軸固定區間也固定;(2)軸動(軸含參數),區間固定;(3)軸固定,區間動(區間含參數). 找最值的關鍵是:(1)圖象的開口方向;(2)對稱軸與區間的位置關系;(3)結合圖象及單調性確定函數最值.
【題型】填空題
【結束】
21
【題目】已知兩個不共線的向量的夾角為
,且
為正實數.
(1)若與
垂直,求
;
(2)若,求
的最小值及對應的
的值,并指出此時向量
與
的位置關系.
(3)若為銳角,對于正實數
,關于
的方程
有兩個不同的正實數解,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=6cos2+
sinωx-3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數f(x)的值域;
(2)若f(x0)=,且x0∈(-
,
),求f(x0+1)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C所對應的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內角B的大;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com