精英家教網 > 高中數學 > 題目詳情

【題目】化簡

1

2

【答案】(1) ;(2) .

【解析】試題分析:(1)切化弦可得三角函數式的值為-1

(2)結合三角函數的性質可得三角函數式的值為

試題解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

點睛:三角函數式的化簡要遵循“三看”原則:一看角,這是重要一環,通過看角之間的差別與聯系,把角進行合理的拆分,從而正確使用公式 ;二看函數名稱,看函數名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結構特征,分析結構特征,可以幫助我們找到變形的方向,如遇到分式要通分等.

型】解答
束】
18

【題目】平面內給定三個向量

1)求

2)求滿足的實數.

3)若,求實數.

【答案】(1) ;(2) ;(3) .

【解析】試題分析:(1)由向量的線性運算法則即可算出(2)根據向量相等即可求出m、n的值

(3)若已知向量=(a,b)、=(c,d),則ad﹣bc=0,計算出即可.

試題解析:

(1)

;

(2)

解之得

(3)

。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:

喜歡該項運動

不喜歡該項運動

總計

40

20

60

20

30

50

總計

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

參照附表,以下結論正確是( )
A.有99.5%以上的把握認為“愛好該項運動與性別有關”
B.有99.5%以上的把握認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有3an=2Sn+3成立.
(1)求數列{an}的通項公式;
(2)設bn=log3an , 求數列{ }的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.

(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用同角三角函數間的基本關系化簡函數解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據二次函數求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

點睛:二次函數在閉區間上必有最大值和最小值,它只能在區間的端點或二次函數圖象的頂點處取到;常見題型有:(1)軸固定區間也固定;(2)軸動(軸含參數),區間固定;(3)軸固定,區間動(區間含參數). 找最值的關鍵是:(1)圖象的開口方向;(2)對稱軸與區間的位置關系;(3)結合圖象及單調性確定函數最值.

型】填空
束】
21

【題目】已知兩個不共線的向量的夾角為,且為正實數.

1)若垂直,求;

2)若,求的最小值及對應的的值,并指出此時向量的位置關系.

3)若為銳角,對于正實數,關于的方程有兩個不同的正實數解,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)6cos2sinωx3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,BC為圖象與x軸的交點,且△ABC為正三角形.

(1)ω的值及函數f(x)的值域;

(2)f(x0),且x0∈(),求f(x01)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對邊,函數 且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,角、的對邊分別為、,向量,

,且.

1)求銳角B的大;

2)在(1)的條件下,如果b=2,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三個內角A,B,C所對應的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內角B的大;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视