【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于
分的選手將直接參加競賽選拔賽.已知成績合格的
名參賽選手成績的頻率分布直方圖如圖所示,其中
的頻率構成等比數列.
(1)求的值;
(2)估計這名參賽選手的平均成績;
(3)根據已有的經驗,參加競賽選拔賽的選手能夠進入正式競賽比賽的概率為,假設每名選手能否通過競賽選拔賽相互獨立,現有
名選手進入競賽選拔賽,記這
名選手在競賽選拔賽中通過的人數為隨機變量
,求
的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,
垂直于底面
,
.
(1)求證;
(2)求平面與平面
所成二面角的大;
(3)設棱的中點為
,求異面直線
與
所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )
A. [,0) B. [
,0] C. [
,1) D. [
,1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了迎接2000年的到來,某地組織了一次乒乓球迎春幸運賽.首先,通過身份號抽選出2000名選手,編號為1,2,…,2000,他們當中任兩人都可以組成一對雙打選手,每對選手的編號之和稱為他們的“和號”.規定:“和號”相同的兩對選手方有資格進行幸運雙打賽.比賽開始前,組委會首先從2000個編號中隨機抽出65名幸運選手,然后找出“和號”相同的兩對選手進行幸運雙打賽(凡同一“和號”的選手分在同一區進行單循環).求證:無論怎樣抽選,總有選手進行幸運賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大小;
(3)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.
(1)證明:BD⊥平面ABB1A1.
(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫出下面平面幾何中的常見結論在立體幾何中也成立的所有序號______.
①四邊形內角和為;
②垂直的兩條直線必相交;
③垂直同一條直線的兩條直線平行;
④平行同一條直線的兩條直線平行;
⑤四邊相等的四邊形,其對角線垂直;
⑥到三角形三邊距離相等的點是這個三角形的內心;
⑦到一個角的兩邊距離相等的點必在這個角的角平分線上;
⑧在平面幾何中有“一組平行線(至少3條)被兩條直線所截得的對應線段成比例”的結論,則這一結論可推廣到立體幾何中“一組平行平面(至少3個)被兩條直線所截得的對應線段也成比例.”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構對某校高二文科學生的記憶力x和判斷力y進行統計分析,得下表數據.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(3)試根據(2)中求出的線性回歸方程,預測記憶力為14的學生的判斷力.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com