精英家教網 > 高中數學 > 題目詳情
若f(x)=x2-x+b,且f(log2a)=b,f(a)=4(a>0且a≠1),
(1)求a,b的值;
(2)求的值域;
(3)求的單調區間.
【答案】分析:(1)由f(log2a)=b,f(a)=4代入,結合a>0且a≠1可求a,b
(2)由(1)可得,y=log2x,結合及對數函數的單調性可求函數的值域
(3)由=,結合二次函數與對數函數的單調性及復合函數的單調性可求函數的單調區間
解答:解:(1)∵f(log2a)=b,f(a)=4
∴a2-a+b=4,
∴log2a=1或log2a=0(舍)
∴a=2,b=2; 
(2)由(1)可得,y=log2x

∴-1≤y≤2
故函數的值域為[-1,2]
(3)∵=
令t=x2-2x-1=(x-1)2-2,
∵函數t=x2-2x-1=(x-1)2-2對稱軸x=1,則由二次函數的性質可知可得單調減區間:(-∞,1),單調遞增區間:(1,+∞)
∵y=2t為單調遞增函數
由復合函數的單調性可知,函數y=的單調減區間:(-∞,1);增區間:(1,+∞)
點評:本題主要考查了利用待定系數法求解函數的函數解析式,對數函數的值域的求解,復合函數的單調區間的求解,屬于函數知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知x>
12
,函數f(x)=x2,h(x)=2e lnx(e為自然常數).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數h(x)的圖象為函數f(x),g(x)的“邊界”.已知函數g(x)=-4x2+px+q(p,q∈R),試判斷“函數f(x),g(x)以函數h(x)的圖象為邊界”和“函數f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)的定義域為R,若存在常數M>0,使|f(x)|≤M|x|對一切實數x均成立,則稱f(x)為F函數.現給出下列函數:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1
;
⑤f(x)是定義在實數集R上的奇函數,且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函數的函數有
①④⑤
①④⑤

查看答案和解析>>

科目:高中數學 來源:鄭州二模 題型:解答題

已知x>
1
2
,函數f(x)=x2,h(x)=2e lnx(e為自然常數).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數h(x)的圖象為函數f(x),g(x)的“邊界”.已知函數g(x)=-4x2+px+q(p,q∈R),試判斷“函數f(x),g(x)以函數h(x)的圖象為邊界”和“函數f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2013年高考數學壓軸大題訓練:函數與不等式的恒成立問題(解析版) 題型:解答題

已知x>,函數f(x)=x2,h(x)=2e lnx(e為自然常數).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數h(x)的圖象為函數f(x),g(x)的“邊界”.已知函數g(x)=-4x2+px+q(p,q∈R),試判斷“函數f(x),g(x)以函數h(x)的圖象為邊界”和“函數f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年河南省鄭州市高考數學二模試卷(理科)(解析版) 題型:解答題

已知x>,函數f(x)=x2,h(x)=2e lnx(e為自然常數).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數h(x)的圖象為函數f(x),g(x)的“邊界”.已知函數g(x)=-4x2+px+q(p,q∈R),試判斷“函數f(x),g(x)以函數h(x)的圖象為邊界”和“函數f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视