【題目】已知函數f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分圖象如圖所示. (I)求f(x)的解析式;
(II)求函數 在區間
上的最大值及相應的x值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,已知直線l1:y=tanαx(0≤a<π,α ),拋物線C:
(t為參數).以原點O為極點,x軸的非負半軸為極軸建立極坐標系 (Ⅰ)求直線l1和拋物線C的極坐標方程;
(Ⅱ)若直線l1和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2 , l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(在平面直角坐標系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ﹣sinθ)=6.
(1)將曲線C1上的所有點的橫坐標、縱坐標分別伸長為原來的 、2倍后得到曲線C2 , 試寫出直線l的直角坐標方程和曲線C2的參數方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動點 與定點
的距離和它到定直線
的距離的比是
∶
,記點
的軌跡為
.
(1)求曲線 的方程;
(2)對于定點 ,作過點
的直線
與曲線
交于不同的兩點
,
,求△
的內切圓半徑的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有10個不同的產品,其中4個次品,6個正品.現每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發現,則該情況出現的概率是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領海的分界線,一艘巡邏艇在O處發現了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;
(2)若O與公海的最近距離20海里,要保證在領海內捕獲走私船(即不能截獲走私船的區域與公海不想交).則O,A之間的最遠距離是多少海里?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構成等差數列,則數列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (a>0,且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數解,則a的取值范圍是( )
A.(0, ]
B.[ ,
]
C.[ ,
]∪{
}
D.[ ,
)∪{
}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com