精英家教網 > 高中數學 > 題目詳情
已知命題p:f (x)=
1-x3
,且|f(a)|<2;命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅,求實數a的取值范圍,使p、q中有且只有一個為真命題.
分析:先求得命題p中草藥范圍,再對x2+(a+2)x+1=0判別式△分類討論,分△<和△≥0,使A∩B=∅,求出a的范圍;然后利用復合命題的真值表,根據“有且僅有一個真”分兩類求出a的范圍.
解答:解:命題p:|f(x)|<2,|
1-a
3
|<2?-5<a<7
(2分)
命題q:設x2+(a+2)x+1=0判別式為△
當△<0時,A=∅,此時△=(a+2)2-4<0,-4<a<0
當△≥0時,由A∩B=∅得
△≥0
x1+x2=-(a+2)<0
?a≥0

∴a>-4    (6分)
(1)若p真q假
-5<q<7
a≤-4
?-5<a≤-4

(2)若p假q真
a≤-5或a≥7
a>-4
?a≥7

∴實數a的取值范圍為(-5,-4]∪[7,+∞)(12分)
點評:本題考查二次不等式恒成立求參數范圍、二次不等式的解法、分類討論的數學思想方法.解答關鍵是復合命題的真假判斷表.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題P:f(x)=x3-ax在(2,+∞)為增函數,命題q:g(x)=x2-ax+3在(1,2)為減函數.若p或q為真,p且q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:f(x)=
1-2xm
在區間(0,+∞)上是減函數;命題q:不等式(x-1)2>m的解集為R.若命題“p∨q”為真,命題“p∧q”為假,則實數m的取值范圍是
m≠0
m≠0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:f(x)=
log3a-1x
在區間(0,+∞)上是增函數;命題q:關于x的不等式x2-2ax+1>0的解集為R,若pⅤq為真,若p∧q為假,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:f(x)=log(m-1)x是減函數,命題q:f(x)=-(5-2m)x是減函數,則p是q的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:f(x)=x2-ax+1在[-1,1]上不具有單調性;命題q:?x0∈R,使得x02+2ax0+4a=0
(Ⅰ)若p∧q為真,求a的范圍.
(Ⅱ)若p∨q為真,求a的范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视