【題目】為了緩解交通壓力,某省在兩個城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來回趟數y是每次拖掛車廂節數x的一次函數,如果該列火車每次拖4節車廂,每日能來回16趟;如果每次拖6節車廂,則每日能來回10趟,火車每日每次拖掛車廂的節數是相同的,每節車廂滿載時能載客110人.
(1)求出y關于x的函數;
(2)該火車滿載時每次拖掛多少節車廂才能使每日營運人數最多?并求出每天最多的營運人數?
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩個研發小組,他們研發新產品成功的概率分別為 和
.現安排甲組研發新產品A,乙組研發新產品B,設甲、乙兩組的研發相互獨立.
(Ⅰ)求至少有一種新產品研發成功的概率;
(Ⅱ)若新產品A研發成功,預計企業可獲利潤120萬元;若新產品B研發成功,預計企業可獲利潤100萬元,求該企業可獲利潤的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數y=f(x)在區間(1,3)上單調,求a的取值范圍;
(2)若函數g(x)=f(x)﹣x在(0, )上無零點,求a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知和定點
,由
外一點
向
引切線
,切點為
,且滿足
.(1)求實數
間滿足的等量關系;
(2)求線段長的最小值;
(3)若以為圓心所作的
與
有公共點,試求半徑取最小值時的
方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數.
(1)求實數k的值;
(2)求函數g(x)的定義域;
(3)若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防甲型流感,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時室內每立方米空氣中的含藥量
與時間
成正比例,藥物燃燒完后滿足
,如圖所示,現測得藥物8
燃畢,此時室內空氣中每立方米的含藥量為6
,請按題中所供給的信息,解答下列各題.
(1)求關于
的函數解析式;
(2)研究表明,當空氣中每立方米的含藥量不低于且持續時間不低于
時才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數h(x)的導函數為g(x),則有g′(x0)=0,設函數f(x)=x3﹣3x2+2,則f( )+f(
)+…+f(
)+f(
)= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com