【題目】在極坐標系中,已知曲線:
和曲線
:
,以極點
為坐標原點,極軸為
軸非負半軸建立平面直角坐標系.
(1)求曲線和曲線
的直角坐標方程;
(2)若點是曲線
上一動點,過點
作線段
的垂線交曲線
于點
,求線段
長度的最小值.
科目:高中數學 來源: 題型:
【題目】某外商到一開發區投資72萬美元建起一座蔬菜加工廠,第一年各種經費12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元。設表示前
年的純收入(
前
年的總收入一前
年的總支出一投資額)
(1)試寫出的關系式.
(2) 該開發商從第幾年開始獲利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數學屆的震動。在1859年的時候,德國數學家黎曼向科學院提交了題目為《論小于某值的素數個數》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數學家歐拉也曾研究過這個問題,并得到小于數字的素數個數大約可以表示為
的結論。若根據歐拉得出的結論,估計1000以內的素數的個數為_________(素數即質數,
,計算結果取整數)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過長期觀測得到:在交通繁忙的時段內,某公路段汽車的車流量y(千輛/小時)與汽車的平均速度v(千米/小時)之間的函數關系為:(
).
(1)在該時段內,當汽車的平均速度為多少時,車流量最大?最大車流量為多少?(保留分數形式)
(2)若要求在該時段內車流量超過10千輛/小時,則汽車的平均速度應在什么范用內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)解不等式;
(2)若函數在區間
上存在零點,求實數
的取值范圍;
(3)若函數,其中
為奇函數,
為偶函數,若不等式
對任意
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現將甲、乙兩個學生在高二的6次數學測試的成績(百分制)制成如圖所示的莖葉圖,進人高三后,由于改進了學習方法,甲、乙這兩個學生的考試數學成績預計同時有了大的提升.若甲(乙)的高二任意一次考試成績為,則甲(乙)的高三對應的考試成績預計為
(若
>100.則取
為100).若已知甲、乙兩個學生的高二6次考試成績分別都是由低到高進步的,定義
為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值.
(I)試預測:在將要進行的高三6次測試中,甲、乙兩個學生的平均成績分別為多少?(計算結果四舍五入,取整數值)
(Ⅱ)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各對事件中,不互為相互獨立事件的是( )
A.擲一枚骰子一次,事件“出現偶數點”;事件
“出現3點或6點”
B.袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件
“第二次摸到白球”
C.袋中有3白、2黑共5個大小相同的小球,依次不放回地摸兩球,事件“第一次摸到白球”,事件
“第二次摸到黑球”
D.甲組3名男生,2名女生;乙組2名男生,3名女生,現從甲、乙兩組中各選1名同學參加演講比賽,事件“從甲組中選出1名男生”,事件
“從乙組中選出1名女生”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
,
,點
在平而
內的射影為
(1)證明:四邊形為矩形;
(2)分別為
與
的中點,點
在線段
上,已知
平面
,求
的值.
(3)求平面與平面
所成銳二面角的余弦值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com