直角坐標平面上,為原點,
為動點,
,
. 過點
作
軸于
,過
作
軸于點
,
. 記點
的軌跡為曲線
,
點、
,過點
作直線
交曲線
于兩個不同的點
、
(點
在
與
之間).
(1)求曲線的方程;
(2)是否存在直線,使得
,并說明理由.
(1) (2)不存在直線l,使得|BP|=|BQ|
解析試題分析:(Ⅰ)設點T的坐標為,點M的坐標為
,則M1的坐標為(0,
),
,于是點N的坐標為
,N1的坐標
為,所以
由
由此得
由
即所求的方程表示的曲線C是橢圓.
(Ⅱ)點A(5,0)在曲線C即橢圓的外部,當直線l的斜率不存在時,直線l與橢圓C
無交點,所以直線l斜率存在,并設為k. 直線l的方程為
由方程組
依題意
當時,設交點
PQ的中點為
,
則
又
而不可能成立,所以不存在直線l,使得|BP|=|BQ|.
考點:橢圓的標準方程;直線與圓錐曲線的綜合問題.
點評:本題主要考查了橢圓的標準方程和橢圓與直線的關系.當涉及直線與圓錐曲線的位置關系時,常需要把直線方程與圓錐曲線的方程聯立,借助韋達定理求得答案.
科目:高中數學 來源: 題型:解答題
在直接坐標系xOy中,直線L的方程為x-y+4=0,曲線C的參數方程為.
(1)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線L的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:
的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且
,當m變化時,探求λ1+λ2的值是否為定值?若是,求出λ1+λ2的值,否則,說明理由;(3)接AE、BD,試證明當m變化時,直線AE與BD相交于定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A,B兩點在拋物線C:x2=4y上,點M(0,4)滿足=λ
.
(1)求證:;
(2)設拋物線C過A、B兩點的切線交于點N.
(ⅰ)求證:點N在一條定直線上;
(ⅱ)設4≤λ≤9,求直線MN在x軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓的方程為
它的離心率為
,一個焦點是(-1,0),過直線
上一點引橢圓
的兩條切線,切點分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點
處的切線方程是
.求證:直線AB恒過定點C,并求出定點C的坐標;
(3)是否存在實數,使得求證:
(點C為直線AB恒過的定點).若存在
,請求出,若不存在請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(滿分13分)
(1)某三棱錐的側視圖和俯視圖如圖所示,求三棱錐的體積.
(2)過直角坐標平面中的拋物線
的焦點
作一條傾斜角為
的直線與拋物線相交于A,B兩點. 用
表示A,B之間的距離;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知直線經過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
和橢圓
上位于
軸上方的動點,直線,
與直線
分別交于
兩點。
(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得
的面積為
?若存在,確定點
的個數,若不存在,說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com