【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大。
(Ⅱ)若 ,求△ABC的面積.
【答案】解:(Ⅰ)∵(2a﹣c)cosB=bcosC,由正弦定理,得 ∴(2sinA﹣sinC)cosB=sinBcosC.
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
∵A∈(0,π),∴sinA≠0.
∴cosB= . 又∵0<B<π,∴B=
.
(Ⅱ)由正弦定理 ,得 b=
=
∵A= ,B=
,∴C=
,∴sinC=sin
=sin(
+
)=sin
cos
+cos
sin
=
.
∴S= =
=
【解析】(Ⅰ)由正弦定理可得 2sinAcosB=sinA,故可得 cosB= ,又0<B<π,可得B=
. (Ⅱ)由正弦定理 求得 b=
=
,由三角形內角和公式求得 C=
,可得sinC 的值,由此求得S=
的值.
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: ,橢圓C2以C1的長軸為短軸,且與C1有
相同的離心率.
(1)求橢圓Q的方程;
(2)設0為坐標原點,點A,B分別在橢圓C1和C2上,,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
(1)求的軌跡
(2)過軌跡上任意一點
作圓
的切線
,設直線
的斜率分別是
,試問在三個斜率都存在且不為0的條件下,
是否是定值,請說明理由,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間四邊形,
分別在
上,
(1) 若,異面直線
與
所成的角的大小為
,求
和
所成的角的大;
(2)當四邊形是平面四邊形時,試判斷
與
三條直線的位置關系,并選擇其中一種位置關系說明理由;
(3)已知當,異面直線
所成角為
,當四邊形
是平行四邊形時,試判斷
點在什么位置時,四邊形
的面積最大,試求出最大面積并說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以原點
為極點,
軸的正半軸為極軸,建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
(
為參數)
(1)求點的直角坐標;化曲線
的參數方程為普通方程;
(2)設為曲線
上一動點,以
為對角線的矩形
的一邊垂直于極軸,求矩形
周長的最小值,及此時
點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以原點
為極點,
軸的正半軸為極軸,建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
(
為參數)
(1)求點的直角坐標;化曲線
的參數方程為普通方程;
(2)設為曲線
上一動點,以
為對角線的矩形
的一邊垂直于極軸,求矩形
周長的最小值,及此時
點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數是老年職工人數的2倍。為了解職工身體狀況,現采用分層抽樣方法進行調查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c, =(
,1),
=(sinA,cosA),
與
的夾角為60°. (Ⅰ)求角A的大;
(Ⅱ)若sin(B﹣C)=2cosBsinC,求 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com