【題目】已知a+b=1,對a,b∈(0,+∞), +
≥|2x﹣1|﹣|x+1|恒成立,
(1)求 +
的最小值;
(2)求x的取值范圍.
【答案】
(1)解:∵a>0,b>0且a+b=1
∴ =
,
當且僅當b=2a時等號成立,又a+b=1,即 時,等號成立,
故 的最小值為9.
(2)解:因為對a,b∈(0,+∞),使 恒成立,
所以|2x﹣1|﹣|x+1|≤9,
當 x≤﹣1時,2﹣x≤9,∴﹣7≤x≤﹣1,
當 時,﹣3x≤9,∴
,
當 時,x﹣2≤9,∴
,∴﹣7≤x≤11.
【解析】(1)利用“1”的代換,化簡 +
,結合基本不等式求解表達式的最小值;(2)利用第一問的結果.通過絕對值不等式的解法,即可求x的取值范圍.
【考點精析】掌握基本不等式在最值問題中的應用是解答本題的根本,需要知道用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.
科目:高中數學 來源: 題型:
【題目】已知定義在R上的可導函數f(x)的導函數為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數,f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
拋物線
上存在一點
到焦點
的距離等于3.
(1)求拋物線的方程;
(2)過點的直線
與拋物線
相交于
兩點(
兩點在
軸上方),點
關于
軸的對稱點為
,且
,求
的外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是圓O的直徑.過點C作圓O的切線交BA的延長線于點F.
(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環境,發展低碳經濟,某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數關系可近似地表示為:y=x2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.
該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在實數x滿足f(x)=log2a,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com