【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線與圓C的位置關系,并證明你的結論;
(3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線
,
的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.
【答案】(1)證明見解析;定點(2)直線與圓C相切;證明見解析;(3)存在;
,
或者
,
【解析】
(1)根據題意得到,解得答案.
(2)將圓化為標準形式,計算圓心到直線的距離與半徑作比較得到答案.
(3)根據準線和橢圓過點計算得到,得到橢圓方程,設定點
,
,計算
為定值,得到
,計算得到答案.
(1)圓C的方程可化為:,
由,解得
,所以圓C過定點
.
(2)圓C的方程可化為:,
圓心到直線l的距離為,
所以直線與圓C相切.
(3)當時,圓C方程為
,圓心為
,半徑為10,
與直線,即
相切,所以橢圓的左準線為
,
又橢圓過點,則
,所以
,解得
,
所以橢圓方程為.
在橢圓上任取一點(
),設定點
,
,
則對
恒成立,
所以對
恒成立,
所以,故
或
,
所以,
或者
,
.
科目:高中數學 來源: 題型:
【題目】設函數g(x)=sinωx(ω>0)向左平移個單位長度得到函數f(x),已知f(x)在[0,2π]上有且只有5個零點,則下列結論正確的是( )
A.f(x)的圖象關于直線對稱
B.f(x)在(0,2π)上有且只有3個極大值點,f(x)在(0,2π)上有且只有2個極小值點
C.f(x)在上單調遞增
D.ω的取值范圍是[)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
,直線
的參數方程為
(t為參數),
,點A為直線
與曲線C在第二象限的交點,過O點的直線
與直線
互相垂直,點B為直線
與曲線C在第三象限的交點.
(1)寫出曲線C的直角坐標方程及直線的普通方程;
(2)若,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“
”表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了提高生產線的運行效率,工廠對生產線的設備進行了技術改造.為了對比技術改造后的效果,采集了生產線的技術改造前后各20次連續正常運行的時間長度(單位:天)數據,并繪制了如莖葉圖:
(1)(i)設所采集的40個連續正常運行時間的中位數m,并將連續正常運行時間超過m和不超過m的次數填入下面的列聯表:
超過 | 不超過 | |
改造前 | ||
改造后 |
(ii)根據(i)中的列聯表,能否有99%的把握認為生產線技術改造前后的連續正常運行時間有差異?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)工廠的生產線的運行需要進行維護,工廠對生產線的生產維護費用包括正常維護費、保障維護費兩種.對生產線設定維護周期為T天(即從開工運行到第kT天進行維護.生產線在一個生產周期內設置幾個維護周期,每個維護周期相互獨立.在一個維護周期內,若生產線能連續運行,則不會產生保障維護費;若生產線不能連續運行,則產生保障維護費.經測算,正常維護費為0.5萬元/次;保障維護費第一次為0.2萬元/周期,此后每增加一次則保障維護費增加0.2萬元.現制定生產線一個生產周期(以120天計)內的維護方案:
,
.以生產線在技術改造后一個維護周期內能連續正常運行的頻率作為概率,求一個生產周期內生產維護費的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網上下單,商品由快遞業務公司統一配送(配送費由政府補貼).快遞業務主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規定快遞員每天底薪為70元,每送件一次提成1元;乙公司規定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設同一公司的快遞員每天送件數相同,現從這兩家公司往年忙季各隨機抽取一名快遞員并調取其100天的送件數,得到如下條形圖:
(1)求乙公司的快遞員一日工資y(單位:元)與送件數n的函數關系;
(2)若將頻率視為概率,回答下列問題:
①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數學期望;
②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種
值的表達式紛紛出現,使得
值的計算精度也迅速增加.華理斯在1655年求出一個公式:
,根據該公式繪制出了估計圓周率
的近似值的程序框圖,如下圖所示,執行該程序框圖,已知輸出的
,若判斷框內填入的條件為
,則正整數
的最小值是
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com