【題目】函數f(x)=滿足:對任意的實數x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,則實數a的取值范圍是(。
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環數如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環數的平均數和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1、F2 , 這兩條曲線在第一象限的交點為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2 的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數的值域為[0,+∞),求實數a的取值范圍;
(2)若關于x的不等式F(x)>af(x)+12恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若m=0,求函數f(x)的定義域;
(2)若函數f(x)的值域為R,求實數m的取值范圍;
(3)若函數f(x)在區間上是增函數,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率
,短軸右端點為
,
為線段
的中點.
(Ⅰ) 求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓
相交于兩點
,試探究在
軸上是否存在定點
,使得
,若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】執行如圖所示的程序框圖,則“3<m<5”是“輸出i的值為5”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資
類產品的收益與投資額的算術平方根成正比.已知投資1萬元時
兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】菜農定期使用低害殺蟲農藥對蔬菜進行噴灑,以防止害蟲的危害,但蔬菜上市時蔬菜仍存有少量的殘留農藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗蔬菜1千克后,蔬菜上殘留的農藥
(單位:微克)的統計表:
1 | 2 | 3 | 4 | 5 | |
58 | 54 | 39 | 29 | 10 |
(1)在答題紙的坐標系中,描出散點圖,并判斷變量與
是正相關還是負相關;
(2)若用解析式作為蔬菜農藥殘量
與用水量
的回歸方程,令
,計算平均值
與
,完成以下表格(填在答題卡中),求出
與
的回歸方程.(
,
保留兩位有效數字):
1 | 4 | 9 | 16 | 25 | |
58 | 54 | 39 | 29 | 10 | |
(3)對于某種殘留在蔬菜上的農藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請評估需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數據)(附:對于一組數據
,
,……,
,其回歸直線
的斜率和截距的最小二乘法估計分別為:
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com