精英家教網 > 高中數學 > 題目詳情
在正四棱錐S-ABCD中,點O是底面中心,SO=2,側棱SA=2
3
,則該棱錐的體積為
32
3
32
3
分析:根據題意,利用勾股定理算出底面中心到頂點的距離為2
2
,利用正方形的性質得出底面邊長為4,再由錐體的體積公式加以計算,即可得到該棱錐的體積.
解答:解:∵在正四棱錐S-ABCD中,側棱SA=2
3
,高SO=2,
∴底面中心到頂點的距離AO=
SA2-SO2
=2
2

因此,底面正方形的邊長AB=
2
AO=4,底面積S=AB2=16
該棱錐的體積為V=
1
3
SABCD•SO=
1
3
×16×2=
32
3

故答案為:
32
3
點評:本題給出正四棱錐的高和側棱長,求它的體積.著重考查了正四棱錐的性質、正方形中的計算和錐體體積公式等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大;
(3)在△ABC內是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:云南省昆明八中2012屆高三上學期期中考試數學理科試題 題型:022

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為________

查看答案和解析>>

科目:高中數學 來源:2012年內蒙古赤峰市元寶山二中高考數學三模試卷(理科)(解析版) 題型:解答題

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為   

查看答案和解析>>

科目:高中數學 來源:2010年江西省吉安市高考數學二模試卷(理科)(解析版) 題型:解答題

如圖,在正四棱錐S-ABCD中,AB=,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大小;
(3)在△ABC內是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视