精英家教網 > 高中數學 > 題目詳情

已知函數處取得極值.
(1)求實數的值;
(2)若關于的方程上恰有兩個不相等的實數根,求實數的取值范圍;
(3)若,使成立,求實數的取值范圍

 , (2) (3)

解析試題分析:⑴先求再解方程 .(2)由構造函數然后求 ,再解方程,確定的單調區間,然后確定 的取值范圍. (3)由,使成立 ,利用導數求 的最小值,利用二次函數求的最小值,解不等式求 的范圍.
試題解析: 由題意得           4分
(2)由⑴得


單調遞增,單調遞減,單調遞增.
    7分
方程上恰有兩個不等的實數根,則,     9分
(3)依條件,

上為減函數,在上為增函數
                                              12分
的最小值為    
  ∴的取值范圍為                     14分
考點:求導數,應用導數求單調區間最值,構造函數法,解不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數 .
(1)若.
(2)若函數上是增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題13分)已知函數
(1)若實數求函數上的極值;
(2)記函數,設函數的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內單調遞減,求滿足此條件的實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數 (R),且該函數曲線處的切線與軸平行.
(Ⅰ)討論函數的單調性;
(Ⅱ)證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的最大值;
(2)若函數沒有零點,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數().
(1)當時,求函數的單調區間;
(2)當時,取得極值,求函數上的最小值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程是x+ y-l=0,其中e為自然對數的底數,函數g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(Ⅰ)若函數上單調遞減,在區間單調遞增,求的值;
(Ⅱ)若函數上有兩個不同的極值點,求的取值范圍;
(Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视