【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為,③∠ABC
.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點為F.
(1)在線段AB上是否存在一點G,使得AF平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請說明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
【答案】(1)存在,G是線段AB的中點,證明見解析;(2)詳見解析
【解析】
(1)設PC的中點為H,連結FH,由題意得AGHF為平行四邊形,則AF∥GH,由此能證明在線段AB上存在中點G,使得AF∥平面PCG.
(2)選擇①AB⊥BC,推導出AB,AD,AP彼此兩兩垂直,以AB,AD,AP分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角F﹣AC﹣D的余弦值.選擇②FC與平面ABCD所成的角為,取BC中點E,連結AE,取AD的中點M,連結FM,CM,則FM∥PA,且FM=1,FM⊥平面ABCD,FC與平面ABCD所成角為∠FCM,
,推導出AE,AD,AP彼此兩兩垂直,以AE、AD、AP分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角F﹣AC﹣D的余弦值.選擇③∠ABC
,推導出PA⊥BC,取BC中點E,連結AE,推導出 AE,AD,AP彼此兩兩垂直,以AE、AD、AP分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角F﹣AC﹣D的余弦值.
(1)在線段AB上存在中點G,使得AF∥平面PCG.
證明如下:如圖所示:
設PC的中點為H,連結FH,
因為,
,
,
,
所以
所以四邊形AGHF為平行四邊形,
則AF∥GH,
又GH平面PGC,AF平面PGC,
∴AF∥平面PGC.
(2)選擇①AB⊥BC:
∵PA⊥平面ABCD,∴PA⊥BC,
由題意知AB,AD,AP彼此兩兩垂直,
以AB,AD,AP分別為x,y,z軸,建立空間直角坐標系,
∵PA=AB=2,
則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),
∴(0,1,1),
(﹣2,﹣1,1),
設平面FAC的一個法向量為(x,y,z),
∴,
取y=1,得(﹣1,1,﹣1),
平面ACD的一個法向量為(0,0,1),
設二面角F﹣AC﹣D的平面角為θ,
則cosθ,
∴二面角F﹣AC﹣D的余弦值為.
選擇②FC與平面ABCD所成的角為:
∵PA⊥平面ABCD,取BC中點E,連結AE,取AD的中點M,連結FM,CM,
則FM∥PA,且FM=1,
∴FM⊥平面ABCD,
FC與平面ABCD所成角為∠FCM,∴,
在Rt△FCM中,CM,
又CM=AE,∴AE2+BE2=AB2,∴BC⊥AE,
∴AE,AD,AP彼此兩兩垂直,
以AE、AD、AP分別為x,y,z軸,建立空間直角坐標系,
∵PA=AB=2,
∴A( 0,0,0),B( ,﹣1,0),C(
,1,0),D(0,2,0),E(
,0,0),F(0,1,1),P(0,0,2),
∴(0,1,1),
(
,0,1),
設平面EAC的一個法向量為(x,y,z),
則,
取x,得
(
,﹣3,3),
平面ACD的一個法向量為:(0,0,1),
設二面角F﹣AC﹣D的平面角為θ,
則cosθ.
∴二面角F﹣AC﹣D的余弦值為.
選擇③∠ABC:
∵PA⊥平面ABCD,
∴PA⊥BC,取BC中點E,連結AE,
∵底面ABCD是菱形,∠ABC=60°,∴△ABC是正三角形,
∵E是BC的中點,∴BC⊥AE,
∴AE,AD,AP彼此兩兩垂直,
以AE、AD、AP分別為x,y,z軸,建立空間直角坐標系,
∵PA=AB=2,
∴A( 0,0,0),B( ,﹣1,0),C(
,1,0),D(0,2,0),E(
,0,0),F(0,1,1),P(0,0,2),
∴(0,1,1),
(
,0,1),
設平面EAC的一個法向量為(x,y,z),
則,
取x,得
(
,﹣3,3),
平面ACD的法向量(0,0,1),
設二面角F﹣AC﹣D的平面角為θ,
θ則cosθ.
∴二面角F﹣AC﹣D的余弦值為.
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節水方案,對居民用水情況進行調查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數據按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,說明理由.
(3)估計居民月用水量的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為提升中學生的數學素養,激發學生學習數學的興趣,舉辦了一次“數學文化知識大賽”,分預賽和復賽兩個環節.已知共有8000名學生參加了預賽,現從參加預賽的全體學生中隨機地抽取100人的預賽成績作為樣本,得到如下頻率分布直方圖.
(1)規定預賽成績不低于80分為優良,若從上述樣本中預賽成績不低于60分的學生中隨機地抽取2人,求恰有1人預賽成績優良的概率;
(2)由頻率分布直方圖可認為該市全體參加預賽學生的預賽成績Z服從正態分布N(μ,σ2),其中μ可近似為樣本中的100名學生預賽成績的平均值(同一組數據用該組區間的中點值代替),且σ2=362.利用該正態分布,估計全市參加預賽的全體學生中預賽成績不低于91分的人數;
(3)預賽成績不低于91分的學生將參加復賽,復賽規則如下:①每人的復賽初始分均為100分;②參賽學生可在開始答題前自行決定答題數量n,每一題都需要“花”掉(即減去)一定分數來獲取答題資格,規定答第k題時“花”掉的分數為0.1k(k∈(1,2n));③每答對一題加1.5分,答錯既不加分也不減分;④答完n題后參賽學生的最終分數即為復賽成績.已知學生甲答對每道題的概率均為0.7,且每題答對與否都相互獨立.若學生甲期望獲得最佳的復賽成績,則他的答題數量n應為多少?
(參考數據:;若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面α∩平面β=l,A,C是α內不同的兩點,B,D是β內不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( 。
A.若ABCD,則MN
l
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐,中,
平面
,
,
,
,
為
的中點,
為
的中點.
(1)證明:平面平面
;
(2)在線段上是否存在一點
,使
平面
?若存在,指出點
的位置并給出證明,若不存在,說明理由;
(3)若,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面積為6,求BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為D,若存在實常數
及
,對任意
,當
且
時,都有
成立,則稱函數
具有性質
.
(1)判斷函數是否具有性質
,并說明理由;
(2)若函數具有性質
,求
及
應滿足的條件;
(3)已知函數不存在零點,當
時具有性質
(其中
,
),記
,求證:數列
為等比數列的充要條件是
或
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是正方形,點
在以
為直徑的半圓弧上(
不與
,
重合),
為線段
的中點,現將正方形
沿
折起,使得平面
平面
.
(1)證明:平面
.
(2)若,當三棱錐
的體積最大時,求
到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com