【題目】如圖,在四棱錐,
為矩形,
,
,平面
平面
.
(1)證明:平面平面
;
(2)若為
中點,直線
與平面
所成的角為
,求二面角
的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)推導出平面
,
,從而
平面
,由此能證明平面
平面
.
(2)由平面
,
為
在平面
內的射影,從而
即為直線
與平面
所成的角,取
中點
,連結
,則
,以
為原點,建立空間直角坐標系
,利用向量法能求出二面角
的正弦值.
(1)證明:∵平面平面
,平面
平面
,
矩形中,
,
∴平面
.
∵平面
,
∴.
又∵,
,
平面
,
平面
.
∴平面
.
∵平面
,
∴平面平面
.
(2)解:由(1)知平面
,
為
在平面
內的射影,
∴即為直線
與平面
所成的角,
由題意,,
,
取中點
,連結
,則
,
以為原點,建立如圖所示的空間直角坐標系
,
則,
,
,
,
則,
,
,
設平面的一個法向量為
,
則,即
,
令,則
,
,∴
.
同理易得,平面的一個法向量為
,
由,
∴二面角的正弦值為
.
科目:高中數學 來源: 題型:
【題目】隨著科技的發展,網購已經逐漸融入了人們的生活,在家里不用出門就可以買到自己想要的東西,在網上付款即可,兩三天就會送到自己的家門口,所以選擇網購的人數在逐年增加.某網店統計了2014年一2018年五年來在該網店的購買人數(單位:人)各年份的數據如下表:
年份( | 1 | 2 | 3 | 4 | 5 |
24 | 27 | 41 | 64 | 79 |
(1)依據表中給出的數據,是否可用線性回歸模型擬合與時間
(單位:年)的關系,請通過計算相關系數
加以說明,(若
,則該線性相關程度很高,可用線性回歸模型擬合)
附:相關系數公式
參考數據
(2)該網店為了更好的設計2019年的“雙十一”網購活動安排,統計了2018年“雙十一”期間8個不同地區的網購顧客用于網購的時間x(單位:小時)作為樣本,得到下表
地區 | ||||||||
時間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數據的平均數;
②通過大量數據統計發現,該活動期間網購時間近似服從正態分布
,如果預計2019年“雙十一”期間的網購人數大約為50000人,估計網購時間
的人數.
(附:若隨機變量服從正態分布
則
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面
側面
,
,楔面
是邊長為2的正三角形,點
在側面
的射影是矩形
的中心
,點
在
上,且
(1)證明:平面
;
(2)求楔面與側面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知如圖,長方體中,
,
,點
,
,
分別為
,
,
的中點,過點
的平面
與平面
平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖中畫出這個幾何圖形,并求這個幾何圖形的面積(畫圖說出作法,不用說明理由);
(2)求證:平面
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓x2+y2=8內有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當α=時,求AB的長;
(2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前n項和為
,且滿足
,數列
中,
,對任意正整數
,
.
(1)求數列的通項公式;
(2)是否存在實數,使得數列
是等比數列?若存在,請求出實數
及公比q的值,若不存在,請說明理由;
(3)求數列前n項和
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com