【題目】已知f(n)=1+ +
+…+
(n∈N*),計算得f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
,由此推算:當n≥2時,有( )
A.f(2n)> (n∈N*)
B.f(2n)> (n∈N*)
C.f(2n)> (n∈N*)
D.f(2n)> (n∈N*)
科目:高中數學 來源: 題型:
【題目】設函數f(x)= +lnx,則( )
A.x=2為f(x)的極大值點??
B.x=2為f(x)的極小值點
C.x= 為f(x)的極大值點??
D.x= 為f(x)的極小值點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的上頂點為P(0,1),過E的焦點且垂直長軸的弦長為1.若有一菱形ABCD的頂點A、C在橢圓E上,該菱形對角線BD所在直線的斜率為﹣1.
(1)求橢圓E的方程;
(2)當直線BD過點(1,0)時,求直線AC的方程;
(3)當∠ABC= 時,求菱形ABCD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數g(x)=xf(x)+4x的單調遞增區間及極值.
(3)求函數g(x)=xf(x)+4x在x∈[0,2]的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+ax2+x(a∈R).
(1)若函數f(x)在x=1處的切線平行于x軸,求實數a的值,并求此時函數f(x)的極值;
(2)求函數f(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求實數a,m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com