【題目】省環保廳對、
、
三個城市同時進行了多天的空氣質量監測,測得三個城市空氣質量為優或良的數據共有180個,三城市各自空氣質量為優或良的數據個數如下表所示:
|
|
| |
優(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數據中隨機抽取一個,恰好抽到記錄城市空氣質量為優的數據的概率為0.2.
(1)現按城市用分層抽樣的方法,從上述180個數據中抽取30個進行后續分析,求在城中應抽取的數據的個數;
(2)已知,
,求在
城中空氣質量為優的天數大于空氣質量為良的天數的概率.
科目:高中數學 來源: 題型:
【題目】為了得到函數y=sin(2x﹣ )的圖象,只需把函數y=sin(2x+
)的圖象( )
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( ,
),B(
,
).則下列說法錯誤的是( )
A.φ=
B.函數f(x)的一條對稱軸為x=
C.為了得到函數y=f(x)的圖象,只需將函數y=2sin2x的圖象向右平移 個單位
D.函數f(x)的一個單調減區間為[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x∈(1,+∞),函數f(x)=ex+2ax(a∈R),函數g(x)=| ﹣lnx|+lnx,其中e為自然對數的底數.
(1)若a=﹣ ,求函數f(x)的單調區間;
(2)證明:當a∈(2,+∞)時,f′(x﹣1)>g(x)+a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)(x∈R)d的導函數為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當x≥0時,f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現計劃在AC和BD路邊各修建一個物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設∠EPA=α(0<α< ).
(1)為減少對周邊區域的影響,試確定E,F的位置,使△PAE與△PFB的面積之和最。
(2)為節省建設成本,試確定E,F的位置,使PE+PF的值最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點G為AB的中點,AB=BE=2.
(1)求證:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)設H為線段AF上的點,且AH= HF,求直線BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機對入院的50人進行問卷調查,得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰好有1名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關,請計算出統計量,你有多大把握認為心肺疾病與性別有關?(結果保留三個有效數字)
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024/p> | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com