精英家教網 > 高中數學 > 題目詳情
函數f(x)=
a
b
-
3
2
,
a
=(
3
cosωx,sinωx),
b
=(cosωx,-cosωx)
,其中ω>0,點(x1,0),(x2,0)是函數f(x)圖象上相鄰的兩個對稱中心,且|x1-x2|=
π
2

(1)求函數f(x)的表達式;
(2)若函數f(x)圖象向右平移m(m>0)個單位后所對應的函數圖象是偶函數圖象,求m的最小值.
分析:(1)利用平面向量的數量積的坐標運算與二倍角的正弦與余弦、輔助角公式即可求得f(x)=cos(2x+
π
6
);再由函數f(x)圖象上相鄰的兩個對稱中心之間的距離|x1-x2|=
π
2
可求得其周期T,繼而得ω,于是得函數f(x)的表達式;
(2)由f(x-m)=cos[2(x-m)+
π
6
]=son(2x-2m+
π
6
)為偶函數⇒m=
π
12
-
2
(k∈Z),依題意m>0,即可求得m的最小值.
解答:解:(1)∵f(x)=
3
cos2ωx-sinωxcosωx-
3
2

=
3
1+cos2ωx
2
-
1
2
sin2ωx-
3
2

=
3
2
cos2ωx-
1
2
sin2ωx
=cos(2ωx+
π
6
).
又函數f(x)圖象上相鄰的兩個對稱中心之間的距離|x1-x2|=
π
2
,
T
2
=
π
2

∴T=π=
,
∴ω=1,
∴函數f(x)的表達式為:f(x)=cos(2x+
π
6
);
(2)∵f(x-m)=cos[2(x-m)+
π
6
]=son(2x-2m+
π
6
)為偶函數,
∴-2m+
π
6
=kπ(k∈Z),
∴m=
π
12
-
2
(k∈Z),又m>0,
∴當k=0時,m取得最小值,為
π
12
點評:本題考查三角恒等變換,突出考查函數y=Asin(ωx+φ)的圖象變換與余弦函數的性質,考查平面向量的數量積的坐標運算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x)
,
b
=(cos
x
2
,-sin
x
2
)
,且x∈[0,
π
2
]
,
求:(1)
a
b
|
a
+
b
|
;
(2)求函數f(x)=
a
b
-|
a
+
b
|
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•武昌區模擬)設函數f(x)=
a
b
,其中向量
a
=(m,cosx),
b
=(1+sinx,1)
,x∈R,且f(
π
2
)=2
.   
(Ⅰ)求實數m的值; 
(Ⅱ)求函數f(x)在區間[-
π
2
,
π
2
]
上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
,
π
2
]
,設函數f(x)=
a
b
+|
b
|2+
3
2

(1)求函數f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉定區一模)已知向量
a
={sinx+cosx,2(cosx-1)}
b
={sinx+cosx,cosx+1}
,函數f(x)=
a
b

(1)求函數f(x)的最大值,并求當f(x)取得最大值時x的集合;
(2)當x∈[-
π
4
π
4
]
時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•長寧區二模)設
a
=(x,x+1),
b
=(-x,m-2)
,函數f(x)=
a
b
(其中m為實常數).
(1)如果函數f(x)為偶函數,試確定函數解析式;
(2)試寫出一個m的值,使函數f(x)在x∈[-2,+∞)上存在反函數,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视