【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以原點
為極點,
軸正半軸為極軸建立極坐標系.若曲線
的極坐標方程為
,
點的極坐標為
,在平面直角坐標系中,直線
經過點
,斜率為
.
(1)寫出曲線的直角坐標方程和直線
的參數方程;
(2)設直線與曲線
相交于
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】某校數學課外興趣小組為研究數學成績是否與性別有關,先統計本校高三年級每個學生一學期數學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數分布表.
(1)估計男、女生各自的平均分(同一組數據用該組區間中點值作代表),從計算結果看,數學成績與性別是否有關;
(2)規定80分以上為優分(含80分),請你根據已知條件作出2×2列聯表,并判斷是否有90%以上的把握認為“數學成績與性別有關”.
附表及公式:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一商場對每天進店人數和商品銷售件數進行了統計對比,得到如下表格:
其中=1,2,3,4,5,6,7.
(1)以每天進店人數為橫軸,每天商品銷售件數為縱軸,畫出散點圖;
(2)求線性回歸方程;(結果保留到小數點后兩位)
(參考數據:=3 245,
=25,
=15.43,
=5 075)
(3)預測進店人數為80人時,商品銷售的件數.(結果保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數)分成,
,
,
,
,
六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分數內的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數;
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+alnx.
(1)若a=﹣1,求函數f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數f(x)在[1,e]上的最值;
(3)若a=1,求證:在區間[1,+∞)上,函數f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中.己知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)直線l與曲線C相交于A、B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若n是一個三位正整數,且n的個位數字大于十位數字,十位數字大于百位數字,則稱n為“三位遞增數”(如137,359,567等).
在某次數學趣味活動中,每位參加者需從所有的“三位遞增數”中隨機抽取1個數,且只能抽取一次.得分規則如下:若抽取的“三位遞增數”的三個數字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個位數字是5的“三位遞增數”;
(2)若甲參加活動,求甲得分X的分布列和數學期望E(X).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com