精英家教網 > 高中數學 > 題目詳情

如圖,在四棱錐中,底面是矩形.已知

(Ⅰ)證明平面

(Ⅱ)求四棱錐的體積;

(Ⅲ)設二面角的大小為,求的值.

 

 

【答案】

(Ⅰ)見解析(Ⅱ)(Ⅲ)

【解析】

試題分析:(Ⅰ)

(Ⅱ)作,在由余弦定理可得,

(Ⅲ)作,連接可證得即為所求二面角的平面角,在矩形,,二面角余弦為

考點:線面垂直的判定定理及點面距,二面角的計算

點評:立體幾何題目除此方法外利用空間向量求解也是常用的方法

 

練習冊系列答案
相關習題

科目:高中數學 來源:2010-2011年廣西省桂林中學高二下學期期中考試數學 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大小;
(3)求二面角的大。

查看答案和解析>>

科目:高中數學 來源:2012屆福建省三明市高三第一學期測試理科數學試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,,平面的中點,的中點.    

(Ⅰ) 求證:∥平面

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數學 來源:2013屆上海市高二年級期終考試數學 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大小;

(3)求二面角的大小.

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高二下學期期末考試附加卷數學卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側棱,中點,作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數學 來源:2011屆浙江省高三6月考前沖刺卷數學理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面在棱上.

(Ⅰ)當時,求證平面

(Ⅱ)當二面角的大小為時,求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视