精英家教網 > 高中數學 > 題目詳情
設定義域為R的函數f(x)=|x2-2x|,則關于x的方程g(x)=
1
3
f3(x)-f2(x)+2
,能讓g(x)取極大值的x個數為( 。
分析:先求導函數,確定極值點,進而確定函數的單調性,由此可確定函數極大值的個數.
解答:解:由題意,g′(x)=f2(x)×f′(x)-2f(x)×f′(x)
∴由g′(x)=f2(x)×f′(x)-2f(x)×f′(x)=0得x=0,x=2,x=1,x=1±
3

∴函數在(-∞,0),(1,1-
3
),(2,1+
3
)
上單調減,
(0,1),(1-
3
,2),(1+
3
,+∞)
上單調增
∴函數在1,2處取極大值
故選A.
點評:本題以函數為載體,考查復合函數的單調性,極值,有一定的難度.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有7個不同的實數根,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有5個不同的實數解,則m=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
-2x+a2x+1+b
(a,b為實數)若f(x)是奇函數.
(1)求a與b的值;
(2)判斷函數f(x)的單調性,并證明;
(3)證明對任何實數x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關于x的方程f2(x)+bf(x)+c=0有7個不同實數解的充要條件是 (  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數解x1、x2、x3,則x12+x22|x32等于(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视