【題目】已知函數(
且
)是定義在
上的奇函數.
(1)求的值;
(2)求函數的值域;
(3)當時,
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017年10月1日起施行。作為民法典的開篇之作,《民法總則》與每個人的一生息息相關.某地區為了調研本地區人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區間[25,85]上,年齡的頻率分布及了解《民法總則》的人數如下表:
年齡 | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) | [75,85) |
頻數 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法總則》 | 1 | 2 | 8 | 12 | 4 | 5 |
(Ⅰ)填寫下面2×2 列聯表,并判斷是否有99%的把握認為以45歲為分界點對了解《民法總則》政策有差異;
(Ⅱ)若對年齡在[45,55),[65,75)的被調研人中各隨機選取2人進行深入調研,記選中的4人中不了解《民法總則》的人數為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一顆質地均勻的骰子(它是一種各面上分別標有點數1、2、3、4、5、6的正方體玩具)先后拋擲2次,記第一次出現的點數為m,記第二次出現的點數為n,向量則
和
共線的概率為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為 (參考數據:,
,
)
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數為3.6萬,試估計全市有多少居民?并說明理由;
(Ⅱ)若該市政府擬采取分層抽樣的方法在用水量噸數為和
之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發“低碳環保家庭”獎,設
為用水量噸數在
中的獲獎的家庭數,
為用水量噸數在
中的獲獎家庭數,記隨機變量
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學舉行了為期3天的春季運動會,同時進行全校精神文明擂臺賽.為了解這次活動在全校師生中產生的影響,分別在全校500名教職員工、3000名初中生、4000名高中生中作問卷調查,如果要在所有答卷中抽出120份用于評估,應如何抽取才能得到比較客觀的評價結論?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,
,
,
,點E為AD的中點,
,
平面ABCD,且
求證:
;
線段PC上是否存在一點F,使二面角
的余弦值是
?若存在,請找出點F的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com