【題目】已知函數.
()若
,求
的值.
()在
中,角
,
,
的對邊分別是
,
,
,且滿足
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等六項專項附加扣除.某單位老、中、青員工分別有72,108,120人,現采用分層抽樣的方法,從該單位上述員工中抽取25人調查專項附加扣除的享受情況.
項目 員工 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續教育 | × | × | ○ | × | ○ | ○ |
大病醫療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養老人 | ○ | ○ | × | × | × | ○ |
(1)應從老、中、青員工中分別抽取多少人?
(2)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為A,B,C,D,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.
①試用所給字母列舉出所有可能的抽取結果;
②設M為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件M發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1、F2,離心率為
,且經過點
.
(1)求橢圓C的方程;
(2)動直線與橢圓C相交于點M,N,橢圓C的左右頂點為
,直線
與
相交于點
,證明點
在定直線上,并求出定直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=
Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=
(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內切球的半徑,設四面體的內切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于給定的正整數,若數列
滿足
對任意正整數
總成立,則稱數列
是“
數列”.
(1)證明:等差數列是“
數列”;
(2)若數列既是“
數列”,又是“
數列”,證明:
是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4一4:坐標系與參數方程]已知直線l過原點且傾斜角為,
,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C 的極坐標方程為psin
=4cos
.
(I)寫出直線l的極坐標方程和曲線C 的直角坐標方程;
(Ⅱ)已知直線l過原點且與直線l相互垂直,若lC=-M,l
C=N,其中M,N不與原點重合,求△OMN 面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com