【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程
.
(1)求直線的普通方程及曲線
的直角坐標方程;
(2)設曲線與
軸的兩個交點分別為
,與
軸正半軸的交點為
,求直線
將
分成的兩部分的面積比.
科目:高中數學 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大。
(2) 求異面直線PB與DC所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某物流公司欲將一批海產品從A地運往B地,現有汽車、火車、飛機三種運輸工具可供選擇,這三種工具的主要參考數據如下:
運輸工具 | 途中速度( | 途中費用(元/ | 裝卸時間( | 裝卸費用(元/ |
汽車 | 50 | 80 | 2 | 200 |
火車 | 100 | 40 | 3 | 400 |
飛機 | 200 | 200 | 3 | 800 |
若這批海產品在運輸過程中的損耗為300元/,問采用哪種運輸方式比較好,即運輸過程中的費用與損耗之和最小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓
:
的左、右焦點分別為
,兩焦點與短軸的一個頂點構成等腰直角三角形,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)如圖所示,過橢圓的左焦點作直線(斜率存在且不為0)交橢圓
于
兩點,過右焦點作直線
交橢圓
于
兩點,且
,直線
交
軸于點
,動點
(異于
)在橢圓上運動.
①證明: 為常數;
②當時,利用上述結論求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一款擊鼓小游戲的規則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現一次音樂,要么不出現音樂;每輪游戲擊鼓三次后,出現一次音樂獲得10分,出現兩次音樂獲得20分,出現三次音樂獲得100分,沒有出現音樂則扣除200分(即獲得-200分).設每次擊鼓出現音樂的概率為,且各次擊鼓是否出現音樂相互獨立.
(1)玩三輪游戲,至少有一輪出現音樂的概率是多少?
(2)設每輪游戲獲得的分數為X,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據散點圖判斷,與
哪一個更適宜作燒水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關
的回歸方程;
(3)若旋轉的弧度數與單位時間內煤氣輸出量
成正比,那么
為多少時,燒開一壺水最省煤氣?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列.如果數列
滿足
,
,其中
,則稱
為
的“陪伴數列”.
(Ⅰ)寫出數列的“陪伴數列”
;
(Ⅱ)若的“陪伴數列”是
.試證明:
成等差數列.
(Ⅲ)若為偶數,且
的“陪伴數列”是
,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com