【題目】在平面直角坐標系中,曲線C的參數方程為
(
為參數,
).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方
,且直線l與曲線C相交于A,B兩點.
(1)求曲線C的普通方程和l的直角坐標方程;
(2)若,點
滿足
,求此時r的值.
科目:高中數學 來源: 題型:
【題目】2020年全球爆發新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發熱、咳嗽、氣促和呼吸困難等,嚴重時會危及生命.隨著疫情的發展,自2020年2月5日起,武漢大面積的爆發新冠肺炎,政府為了及時收治輕癥感染的群眾,逐步建立起了14家方艙醫院,其中武漢體育中心方艙醫院從2月12日開艙至3月8日閉倉,累計收治輕癥患者1056人.據部分統計該方艙醫院從2月26日至3月2日輕癥患者治愈出倉人數的頻數表與散點圖如下:
日期 | 2.26 | 2.27 | 2.28 | 2.29 | 3.1 | 3.2 |
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
出倉人數 | 3 | 8 | 17 | 31 | 68 | 168 |
根據散點圖和表中數據,某研究人員對出倉人數與日期序號
進行了擬合分析.從散點圖觀察可得,研究人員分別用兩種函數①
②
分析其擬合效果.其相關指數
可以判斷擬合效果,R2越大擬合效果越好.已知
的相關指數為
.
(1)試根據相關指數判斷.上述兩類函數,哪一類函數的擬合效果更好?(注:相關系數與相關指數R2滿足
,參考數據表中
)
(2)①根據(1)中結論,求擬合效果更好的函數解析式;(結果保留小數點后三位)
②3月3日實際總出倉人數為216人,按①中的回歸模型計算,差距有多少人?
(附:對于一組數據,其回歸直線為
相關系數
參考數據:
|
|
| ||||||
3.5 | 49.17 | 15.17 | 3.13 | 894.83 | 19666.83 | 10.55 | 13.56 | 3957083 |
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.某大學為了解在校本科生對參加某項社會實踐活動的意向,擬采用分層抽樣的方法從該校四個年級的本科生中抽取一個容量為300的樣本進行調查.已知該校一、二、三、四年級本科生人數之比為6:5:5:4,則應從一年級中抽取90名學生
B.10件產品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率為
C.已知變量x與y正相關,且由觀測數據算得=3,
=3.5,則由該觀測數據算得的線性回歸方程可能是
=0.4x+2.3
D.從裝有2個紅球和2個黑球的口袋內任取2個球,至少有一個黑球與至少有一個紅球是兩個互斥而不對立的事件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右頂點分別是雙曲線
:
的左、右焦點,且
與
相交于點(
).
(1)求橢圓的標準方程;
(2)設直線:
與橢圓
交于A,B兩點,以線段AB為直徑的圓是否恒過定點?若恒過定點,求出該定點;若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了更好地貫徹黨的“五育并舉”的教育方針,某市要對全市中小學生“體能達標”情況進行了解,決定通過隨機抽樣選擇幾個樣本校對學生進行體能達標測試,并規定測試成績低于60分為不合格,否則為合格,若樣本校學生不合格人數不超過其總人數的5%,則該樣本校體能達標為合格.已知某樣本校共有1000名學生,現從中隨機抽取40名學生參加體能達標測試,首先將這40名學生隨機分為甲、乙兩組,其中甲乙兩組學生人數的比為3:2,測試后,兩組各自的成績統計如下:甲組的平均成績為70,方差為16,乙組的平均成績為80,方差為36.
(1)估計該樣本校學生體能測試的平均成績;
(2)求該樣本校40名學生測試成績的標準差s;
(3)假設該樣本校體能達標測試成績服從正態分布,用樣本平均數
作為
的估計值
,用樣本標準差s作為
的估計值
,利用估計值估計該樣本校學生體能達標測試是否合格?
(注:1.本題所有數據的最后結果都精確到整數;2若隨機變量z服從正態分布,則,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設各項均為正數的數列的前n項和為
,已知
,且
,對一切
都成立.
(1)當時,證明數列
是常數列,并求數列
的通項公式;
(2)是否存在實數,使數列
是等差數列?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,
為坐標原點,過點
的直線
與
交于
、
兩點.
(1)若直線與圓
相切,求直線
的方程;
(2)若直線與
軸的交點為
,且
,
,試探究:
是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com