【題目】
已知函數.
(1)若,求函數
的值域;
(2)設的三個內角
所對的邊分別為
,若A為銳角且
,
,
,
,求
的值.
【答案】(1) .
(2) .
【解析】試題分析:第一問利用和角公式先將式子拆開,之后應用倍角公式和輔助角公式將解析式化簡,之后根據題中所給的角的范圍,求得整體角的取值范圍,從而確定出正弦值的范圍,最后求得函數的值域,第二問根據題的條件,求得角A的大小,利用正弦定理求得,之后利用平方關系求得
的大小,之后利用差角公式求得結果.
(1)
. ………………2分
由得,
,
, …………………4分
∴,即函數
的值域為
. ………6分
(2)由得
,
又由,∴
,∴
,
.…………………8分
在中,由余弦定理
,得
. ………………10分
由正弦定理,得
,………………12分
∵,∴
,∴
,…………………13分
(此處先由余弦定理求出,再求出
亦可)
∴
……………15分
科目:高中數學 來源: 題型:
【題目】若函數h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數h(x)的導函數為g(x),則有g′(x0)=0,設函數f(x)=x3﹣3x2+2,則f( )+f(
)+…+f(
)+f(
)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1)求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數大于去參加乙游戲的人數的概率;
(3)用 分別表示這4個人中去參加甲、乙游戲的人數,記
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(x+ )n展開式的二項式系數之和為256
(1)求n;
(2)若展開式中常數項為 ,求m的值;
(3)若展開式中系數最大項只有第6項和第7項,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面直角坐標系上一動點到點
的距離是點
到點
的距離的2倍。
(1)求點的軌跡方程;
(2)若點與點
關于點
對稱,求
,
兩點間距離的最大值。
(3)若過點的直線
與點
的軌跡
相交于
、
兩點,
,則是否存在直線
,使
取得最大值,若存在,求出此時
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,設橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結CF2并延長交橢圓于另一點D若 ≤e≤
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列.
(1)求數列的通項公式;
(2)記數列的前
項和為
,求
;
(3)是否存在正整數,使得
仍為數列
中的項,若存在,求出所有滿足的正整數
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 的左、右焦點分別為
,
,點
在橢圓上,
,且
的面積為4.
(1)求橢圓的方程;
(2)點 是橢圓上任意一點,
分別是橢圓的左、右頂點,直線
與直線
分別交于
兩點,試證:以
為直徑的圓交
軸于定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半徑為1的球O內切于正四面體A﹣BCD,線段MN是球O的一條動直徑(M,N是直徑的兩端點),點P是正四面體A﹣BCD的表面上的一個動點,則 的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com